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�� Elements of Complex Algebra

Complex numbers are extensions of real numbers� and they make the
number �elds complete in the sense that an n�th order polynomial has n�th
roots in a complex �eld while it is not always true in the real �eld� Complex
numbers are also very useful in time harmonic analysis of engineering and
physical systems� because they considerably simplify the analysis�

A complex number can be represented in cartesian form as

c � a	 jb 
��

where j �
p��� a is the real part of c while b is the imaginary part of c�

On the complex plane� c is represented by a point c or sometimes an arrow
oc as shown�

φ

Imaginary Axis

Real Axis

b

a

c
|c|

0
Sometimes it is more convenient to represent c in polar form� i�e�

c � a	 jb � jcj ej� � jcj cos�	 j jcj sin � 
�

where jcj � pa� 	 b� is the magnitude or the absolute value of c�
From 
�� it is seen that

tan� �
b

a
� � � tan�� b

a

��

where � is the phase of c�

Addition and Subtraction

Addition and subtraction of complex numbers are carried out in Cartesian
forms�

�



W�C�Chew
ECE ��� Lecture Notes

�� Review of Vector Analysis

A vector A can be written as

A � �xAx � �yAy � �zAz� �	


Similarly� a vector B can be written as

B � �xBx � �yBy � �zBz� ��


In the above� �x� �y� �z are unit vectors pointing in the x� y� z directions re
spectively� Ax� Ay and Az are the components of the vector A in the x� y� z
directions respectively� The same statement applies to Bx� By� and Bz�

Addition

A�B � �x�Ax �Bx
 � �y�Ay �By
 � �z�Az � Bz
� ��


Multiplication

�a
 Dot Product �scalar product


A �B � AxBx � AyBy � AzBz� ��


A �B � B �A� commutative property ��


A � �B�C
 � A �B�A �C� distributive property ��


A �B � jAj jBj cos �� ��


In ��
� � is the angle between vectors A and B�

�b
 Cross Product �vector product


A�B �

������
�x �y �z
Ax Ay Az

Bx By Bz

������ ��x�AyBz � AzBy
 � �y�AzBx � AxBz


� �z�AxBy � AyBx
� ��


�



A�B � �u jAj jBj sin �� ��


where �u is a unit vector obtained from A and B via the right hand rule�

A� �B�C
 � A�B�A�C� distributive property �	�


A� �B�C
 �� �A�B
�C� nonassociative property �		


A�B � �B�A� anticommutative property �	�


Vector Derivatives

Del r � �x
�

�x
� �y

�

�y
� �z

�

�z
� �	�


Gradient r� � �x
�

�x
�� �y

�

�y
�� �z

�

�z
�� �	�


Divergent r �A �
�

�x
Ax �

�

�y
Ay �

�

�z
Az� �	�


Curl r�A �

������
�x �y �z
�
�x

�
�y

�
�z

Ax Ay Az

������
� �x

�
�

�y
Az �

�

�z
Ay

�
� �y

�
�

�z
Ax �

�

�x
Az

�

� �z

�
�

�x
Ay �

�

�y
Az

�
� �	�


Divergence Theorem

I
V

r �AdV �

I
S

A � �ndS� �	�


Stokes Theorem

I
S

�r�A
 � �ndS �

I
C

A � dl� �	�


�



Some Useful Vector Identities

a � �b� c
 � b � �c� a
 � c � �a� b
� �	�


a� �b� c
 � b �a � c
� c �a � b
� ���


a� a � �� ��	


a � �a� b
 � �� ���


r� �r�
 � �� ���


r � �r�A
 � �� ���


r � ��A
 � A � r� � �r �A� ���


r � �A�B
 � B � r �A�A � r �B� ���


r�r�A � r�r �A
�r � rA� ���


r� � r � r �
��

�x�
�

��

�y�
�

��

�z�
� ���


�
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�� Wave Equation from Maxwell�s Equations

Lossless Medium

In a source free region� Maxwell�s equations are

r�H �
�D

�t�
�	


r� E � ��B

�t
� ��


r �B � �� ��


r �D � �� ��


where B � �H and D � �E� Taking the curl of ��
� we have

r� �r� E
 � �� �

�t
r�H� ��


Substituting �	
 into ��
� we obtain

r�r�E � ��� �
�

�t�
E� �


Making use of the vector identity that

r�r� E � r�r �E
�r�E� ��


we have

r�r �E
�r�E � ��� �
�

�t�
E� ��


Since the region is source free� and r �E � �� we have

r�E � ��
��

�t�
E� ��


which is the vector wave equation in freespace where r �E � ��
Similarly� we can show that

r�H � ��
��

�t�
H �	�


if r �H � �� which is� of course� true in free space�

�



Plane Wave Solutions to the Vector Wave Equations

The condition for arriving at Equation ��
 is that r�E � �� We can have
solutions of the form

E � �xEx�z� t
� �		


E � �yEy�z� t
� �	�


but not
E � �zEz�z� t
� �	�


because �	�
 violates r � E � � unless Ez is independent of z� If E is of the
form �		
� then

r�E � �x

�
��

�x�
�

��

�y�
�

��

�z�

�
Ex�z� t
 � �x

��

�z�
Ex� �	�


with both ��

�x�
and ��

�y�
equal to zero� Then ��
 becomes

��

�z�
Ex�z� t
� ��

��

�t�
Ex�z� t
 � �� �	�


Similarly� if H � �yHy�z� t
� �	�
 becomes

��

�z�
Hy�z� t
� ��

��

�t�
Hy�z� t
 � �� �	


Equations �	�
 and �	
 are scalar� one dimensional wave equations of the
form

��

�z�
y�z� t
� 	

v�
��

�t�
y�z� t
 � �� �	�


where v � 	�
p
��� The solution to �	�
 is of the form y � f�z � at
� We can

show that
�

�z
f � f ��z � at
�

�f

�t
� af ��z � at
� �	�


��

�z�
f � f ���z � at
�

��f

�t�
� a�f ���z � at
� �	�


Substituting �	�
 into �	�
� we have

f ���z � at
� a�

v�
f ���z � at
 � �� ���


which is possible only if a � �v� Hence� the general solution to the wave
equation is

y � f�z � vt
 � g�z � vt
� ��	


where f and g are arbitrary functions�

�



The solution f�z � vt
 moves in the positive z�direction for increasing t�

z=0 z=vt
zz

f(z) f(z-vt)

t=0 t>0

zz
z=0 z=-vt

g(z) g(z+vt)

t=0 t>0

The solution g�z � vt
 moves in the negative z�direction for increasing t�

The shapes of the functions f and g are undistorted as they move along�
We can observe wavelike behavior in a pond when we drop a pebble into it�
Solutions to ��
 and �	�
 that correspond to a plane wave is of the form

E � �xf��z � vt
� H � �yf��z � vt
� ���


The wave is propagating in the z�direction� but the electric and magnetic
�elds are transverse to the direction of propagation� Such a wave is known
as the Transverse Electro Magnetic wave or TEM wave�

If one substitutes ���
 into Equation ��
� one has

r� E � �y
�

�z
Ex � �� �

�t
H� ���


or
�

�z
f��z � vt
 � �� �

�t
f��z � vt
� ���


or
f �

�
�z � vt
 � �vf �

�
�z � vt
� ���


or

f��z � vt
 �

r
�

�
f��z � vt
� ��


Hence� for a plane TEM wave�

Ex

Hy

�

r
�

�
� ����� for free space� ���


The quantity

Z �

r
�

�
���


is also known as the intrinsic impedance of free�space�

�
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�� Using Phasor Techniques to Solve Maxwell�s Equations

For a time�harmonic �simple harmonic� signal� Maxwell	s Equations can
be easily solved using phasor techniques� For example� if we let

H 
 �e��Hej�t�� ��

E 
 �e��Eej�t�� ���

and substituting into ����� we have

�e�r� �Hej�t� 
 �e

�
�

�t
��Eej�t

�
� ���

We could replace �
�t

by j� since the signal is time harmonic� Furthermore�
we can remove the �e operator and obtain

r� �Hej�t 
 j���Eej�t� ���

where ej�t cancels out on both sides�
Equation ��� implies Equation ���� Also� any time dependence cancels out in
the problem� Hence�

r� �H 
 j���E� ���

Similarly�
r� �E 
 �j���H� ���

r � ��H 
 �� ���

r � ��E 
 �� ���

Taking the curl of ��� and substituting ��� into it� we have

r�r� �E 
 �j��r� �H 
 �����E� ���

Again� making use of the identity r�r� �E 
 r�r��E��r��E� and r��E 
 ��
we have

r��E 
 ������E� ���

Similarly�
r� �H 
 ������H� ��

These are the Helmholtz	s wave equations�

Lossy Medium �Conductive Medium�

�



Phasor technique is particularly appropriate for solving Maxwell	s equa�
tions in a lossy medium� In a lossy medium� Equation ���� becomes

r�H 
 �
�E

�t
� J� ���

where J is the induced currents in the medium� and hence�

J 
 �E� ���

Applying phasor technique to ���� we have

r� �H 
 j���E� ��E


 j�
�
�� j

�

�

�
�E� ���

We can de�ne the quantity

�� 
 �� j
�

�
���

to be the complex permittivity of the medium� and ��� becomes

r� �H 
 j����E� ���

Notice that the only di�erence between ��� and ��� is the complex permit�
tivity versus the real permittivity� If one goes about deriving the Helmholtz
wave equations for a lossy medium� the results are

r��E 
 �������E� ���

r� �H 
 �������H� ���

Hence� a lossy medium is easily treated using phasor technique by replacing
a real permittivity with a complex permittivity�

If we restrict ourselves to one dimension� Equation ���� for instance�
becomes of the form

d�

dz�
�Ex�z�� �� �Ex�z� 
 �� ���

where

� 
 j�
p
��� 
 j�

r
�
�
�� j

�

�

�

 	� j
� ����

The general solution to ��� is of the form

�Ex�z� 
 C�e
��z � C�e

��z� ���

In real space time�

Ex�z� t� 
 �e� �Ex�z�e
j�t�


 �e�C�e
��zej�t� � �e�C�e

�zej�t� ����

�



If C� 
 jC�j e
j�� � C� 
 jC�j e

j��� � 
 	� j
� then

Ex�z� t� 
 jC�j cos��t� 
z � ���e
��z� j C� j cos��t� 
z � ���e

�z� ����

Note that one of the solutions in ���� is decaying with z while another solution
is growing with z� The function cos��t�
z��� can be written as cos��
�z�
�
�
t� � ��� Hence� it moves with a velocity

v 

�



� ����

Depending on its sign� it moves either in the positive or negative z direction�
In the above� � is the propagation constant� 	 is the attenuation constant

while 
 is the phase constant�

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world�
The phasor representation of Equation ������ is

d

dz
�Ex 
 �j�� �Hy� ����

A corresponding one for �Hy is

d

dz
�Hy 
 �j�� �Ex� ����

If we now let �Ex 
 E�e
��z� �Hy 
 H�e

��z � and using them in ���� yields

��E�e
��z 
 �j��H�e

��z� ����

The above implies that

� 

E�

H�



j��

�



r
�

�
� ����

For a lossy medium� we replace � by the complex permittivity and the intrinsic
impedance becomes

� 


r
�

��



r
�

�� j �
�




s
j��

� � j��
� ����

The above is obviously a complex number�

�



W�C�Chew
ECE ��� Lecture Notes

�� Transmission Lines

σ=

σ=

+

-

GENERAL STRIP LINE COAXIAL 

Examples of Transmission lines

Symbol of a Transmission Line

Symbol of a Transmission Line

Another place where wave phenomenon is often encountered is on trans�
mission lines� A transmission line consists of two parallel conductors of ar�
bitrary cross�sections that can carry two opposite currents or two opposite
charges� A transmission line has capacitances between the two conductors�
and the conductors have inductances to them� We can characterize this ca�
pacitance by a line capacitance C which has the unit of farad m��� and the
inductance by a line inductance L� which has the unit of henry m��� Hence
a transmission line can be approximated by a lumped element equivalent as

�



shown

L∆Z L∆Z L∆ZV V+∆V V+2∆V

C∆Z

I

C∆Z C∆Z

I I+∆I I+2∆I

–∆I

Z

We can derive the voltage equation between nodes ��	 and �
	 to get

V � �V ��V 	  L�z
�I

�t
� ��	

or

�V  �L�z
�I

�t
� �
	

Similarly� the current relation at node ��	 says that

��I  C�z
��V ��V 	

�t
� C�z

�V

�t
� ��	

In the limit when we let our discrete or lumped element model become very
small� or �z � �� we have

�V

�z
 �L�I

�t
� ��	

and
�I

�z
 �C�V

�t
� ��	

The above are known as the telegrapher�s equations� Wave equations can be
easily derived from the above

��V

�z�
� LC

��V

�t�
 �� ��	

and
��I

�z�
� LC

��I

�t�
 �� ��	

Comparing with Equation �����	� we deduce that the velocity of the current
and voltage waves on a transmission line is

v 
�p
LC

� ��	

�



The solution to ��	 may be of the form

V �z� t	  f�z � vt	� ��	

Substituting into ��	� we have

�L�I
�t

 f ��z � vt	 ���	

or

I�z� t	 
�

Lv
f�z � vt	� ���	

Hence�

V �z� t	

I�z� t	
 Lv 

r
L

C
��
	

for a forward going wave� The quantity

Z� 

r
L

C
���	

is the characteristic impedance of a transmission line�

Lossy Transmission Line

Often time� a transmission line has loss to it� For example� the conductor
has a �nite conductivity and hence is a little resistive� The insulation between
the conductors may have current leakage� thus not forming an ideal capacitor�
A more appropriate lumped element model is as follows�

R∆Z L∆Z R∆Z L∆Z R∆Z L∆Z

G∆Z C∆Z G∆Z C∆Z G∆Z C∆Z

The above circuit is more easily treated using phasor techniques� If we
have applied phasor technique to ��	 and ��	� we would have obtained

d�V

dz
 �j�L�I� ���	

d�I

dz
 �j�C �V � ���	

�



Note that j�L is the series impedance per unit length of the lossless line
while j�C is the shunt admittance per unit length of the lossless line� In the
lossy line case� the series impedance per unit length becomes

Z  j�L� R ���	

while the shunt admittance per unit length becomes

Y  j�C �G ���	

where R and G are line resistance and line conductance respectively� The
telegraphers equations become

d �V

dz
 �Z �I� ���	

d�I

dz
 �Y �V � ���	

and the corresponding Helmholtz wave equations are

d� �V

dz�
� ZY �V  �� �
�	

d� �I

dz�
� ZY �I  �� �
�	

Similarly� the characteristic impedance� is

Z� 

s
j�L

j�C
� Z� 

s
j�L�R

j�C �G


r
Z

Y
� �

	

Equations �
�	 and �
�	 are of the same form as ���

	 or

d� �V

dz�
� �� �V  �� �
�	

d� �I

dz�
� �� �I  �� �
�	

where
� 

p
ZY 

p
�j�L� R	�j�C �G	  �� j�� �
�	

The general solution is of the form ���
�	� For example�

�V �z	  V�e
��z � V�e

��z

 V�e
��z�j�z � V�e

�z�j�z� �
�	

If V�  jV�j ej��� V�  jV�j e�j��� then the real time representation of
V is

V �z� t	  �e� �V �z	ej�t�

 jV�j e��z cos��t� �z � ��	 � jV�j e�z cos��t� �z � ��	� �
�	

�



The �rst term corresponds to a decaying wave moving in the positive z�
direction while the second term corresponds to a wave decaying and moving
in the negative z�direction� Hence� e��z corresponds to a positive going wave�
while e��z corresponds to a negative going wave�

If the transmission line is lossless� i�e�� R  G  �� then� the attenuation
constant �  �� and the propagation constant � becomes �  j�� In this
case� there is no attenuation� and �
�	 becomes

�V �z	  V�e
�j�z � V�e

�j�z� �
�	

and �
�	 becomes

V �z� t	  jV�j cos��t� �z � ��	 � jV�j cos��t� �z � ��	� �
�	

The wave propagates without attenuation or without decay in this case�
The velocity of propagation is v  �	��

Furthermore� we can derive the current that corresponds to the voltage
in �
�	 using Equation ���	� Hence

�I  � �

Z

d �V

dz


�

Z
V�e

��Z � �

Z
V�e

��Z � ���	

But
�

Z


r
Y

Z


�

Z�

���	

where Z� is the characteristic impedance given by Equation �

	� Hence�

�I 
V�
Z�

e��Z � V�
Z�

e�Z  I�e
��Z � I�e

�Z � ��
	

where
V�
I�

 Z��
V�
I�

 �Z�� ���	

�
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�� Terminated Uniform Lossless Transmission Lines

Zo, v

ZL LOAD

lossless

z = –l z = 0

Consider a lossless transmission line terminated in a load of impedance
ZL� A wave traveling to the right will be re�ected at the termination� In
general� there will be both positive going and negative going waves on the
line� Hence�

�V �z	 
 V�e
�j�z � V�e

�j�z� ��	

Here� � 
 j�� � 
 �� because of no loss� The corresponding current� as in
����	� is

�I�z	 

V�
Z�

e�j�z � V�
Z�

e�j�z� �	

where Z� 

q

L
C
and � 
 �

p
LC for a lossless line�

At z 
 ��
�V �z 
 �	
�I�z 
 �	


 ZL 

V� � V�
V� � V�

Z�� ��	

We can solve for V� in terms of V�� i�e�

V� 

ZL � Z�

ZL � Z�

V�� ��	

If we de�ne

�v 

ZL � Z�

ZL � Z�
� ��	

then V� 
 �vV�� and Equation ��	 becomes

�V �z	 
 V�e
�j�z � �vV�e

�j�z� ��	

In the above� �v is the ratio of the negative going voltage amplitude to the
positive going voltage amplitude at z 
 �� and it is known as the voltage

re�ection coe�cient�

�



The current re�ection coe�cient is de�ned as the ratio of the negative
going current to the positive going current at z 
 �� and it is

�i 

I�
I�


 �V�
V�


 ��v� ��	

The current can be written as

�I�z	 

V�
Z�

e�j�z � �v
V�
Z�

ej�z� ��	

The voltage and current in ��	 and ��	 are not constants of position� We can
de�ne a generalized impedance at position z to be

Z�z	 

�V �z	
�I�z	


 Z�
e�j�z � �ve

�j�z

e�j�z � �ve�j�z
� ��	

At z 
 �l� this becomes

Z��l	 
 Z�
ej�l � �ve

�j�l

ej�l � �ve�j�l
� ���	

With �v de�ned by ��	� we can substitute it into ���	 to give after some
simpli�cations�

Z��l	 
 Z�
ZL � jZ� tan�l

Z� � jZL tan�l
� ���	

Shorted Terminations

If ZL is a short� or ZL 
 �� then�

Z��l	 
 jZ� tan�l 
 jX� ��	

x

β

inductive

capacitive

π 3π
2

2π
5π
2

π
2

Open�Circuit Terminations

If ZL is an open circuit� ZL 
�� then

Z��l	 
 �jZ� cot �l 
 jX� ���	

�



x
inductive

capacitive

π
3π
2

2π
5π
2

π
2

β

Standing Waves on a Lossless Transmission Line

The positive going wave in Equation ��	 is

V��z	 
 V�e
�j�z� ���	

and the negative going wave in Equation ��	 is

V
�

�z	 
 �vV�e
�j�z� ���	

We can de�ne a generalized re�ection coe�cient to be the ratio of V��z	
to V

�

�z	 at position z� Hence�

��z	 

V
�

�z	

V��z	

 �ve

�j�z� ���	

Hence�

V �z	 
 V�e
�j�z�� � ��z	�� ���	

The magnitude of V �z	 is then

jV �z	j 
 jV�j j� � ��z	j � ���	

A plot of jV �z	j is as shown�

1
ρv

+z
z = 0
–z

Γ(z)
–d11 + Γ(z)

Im Axis

Re Axis

–dmin

�



|V(z)|

Vmax

Vmin

z = 0
–d1–dmin–d1– λ

2
z

We can use the triangular inequality and show that

jV�j ��� j��z	j	 � jV �z	j � jV�j �� � j��z	j	� ���	

From ���	� j��z	j 
 j�vj� hence ���	 becomes�

jV�j ��� j�vj	 � jV �z	j � jV�j �� � j�vj	� ��	

The voltage standing wave ratio is de�ned to be Vmax�Vmin� and from ��	�
it is

VSWR 

� � j�vj
�� j�vj � ��	

If �v 
 �� then VSWR
 �� and we have no re�ected wave� We say that
the load is matched to the transmission line� Note that �v 
 � when ZL 
 Z��

If j�vj 
�� then VSWR
 �� and we have a badly matched transmission
line� In a passive load�

� � j�vj � �� �	

j�vj 
� only when ZL 
 �� or ZL 
� according to Equation ��	� Hence�

� � VSWR 	�� ��	

VSWR is an indicator of how well a load is being matched to the transmission
line� We can solve ��	 for j�vj in terms of VSWR� i�e�

j�vj 
 VSWR� �

VSWR� �
� ��	

Therefore� given the measurement of VSWR on a terminated transmission
line� we can deduce the magnitude of �v� Furthermore� if we know the phase
of �v� we would be able to derive ZL from ��	� or

ZL 
 Z�
� � �v
�� �v

� ��	

or

ZL 
 Z�
� � j�vj ej�v
�� j�vj ej�v � ��	

�



where
�v 
 j�vj ej�v � ��	

Determining 
v from jV �z	j


v can be determined from the voltage standing wave measured� The
voltage standing wave pattern is proportional to j� � ��z	j� but ��z	 is related
to �v as

��z	 
 �ve
�j�z� ��	

Writing the polar representation of �v� we have�

��z	 
 j�vj ej���z��v�� ��	

However� we know that the �rst minimum value of V �z	 occurs when ��z	 is
purely negative� or the phase of ��z	 is ��� This occurs at z 
 �dmin �rst�
In other words�

��dmin � 
v 
 ��� ���	

Since dmin can be obtained from the voltage standing wave pattern measure�
ment� and that � 
 ���� we deduce that


v 
 �� �
��

�
dmin� ���	

Transmission Coe�cients

It is sometimes useful to de�ne a transmission coe�cient on a transmis�
sion line� The transmission coe�cient may be de�ned as the ratio of the
voltage on the load to the amplitude of the incident voltage� Since

V �z	 
 V�e
�j�z � �vV�e

�j�z� ��	

The voltage at the load is V �z 
 �	� and it is given by

V ��	 
 V��� � �v	� ���	

Since the amplitude of the incident voltage is V�� we have

v 

V ��	

V�

 � � �v 


ZL

ZL � Z�
� ���	

�
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�� The Smith Chart

We have seen from Equation ����� that a generalized impedance can be
de	ned as

Z�z� 

�V �z�
�I�z�


 Z�

e�j�z � �ve
�j�z

e�j�z � �ve�j�z
� ��

The above can be written as

Z�z� 
 Z�

 � �ve
�j�z

� �ve�j�z

 Z�

 � ��z�

� ��z�
� ���

where ��z� is as de	ned in ������ When z 
 �� Z��� 
 ZL� and ���� 
 �v�
and ��� becomes ������� Hence ������ is a special case of ���� We can introduce
a normalized generalized impedance to be

Zn�z� 

Z�z�

Z�



 � ��z�

� ��z�
� ���

Similarly�

��z� 

Zn�z�� 

Zn�z� � 
� ���

Given ��z�� we can solve for Zn�z� in ���� and given Zn�z�� we can solve for
��z� in ���� It turns out that the mapping of Zn�z� to ��z� and the mapping
of ��z� to Zn�z� are one�to�one� We shall next discuss a graphical method to
solve ��� and ��� rapidly using the Smith Chart�

1

–1

0 0.5 1 2

Zn – plane

Re Γ

|Γ| = 1
circle

0 0.5 1 2

Im Γ

Γ–plane

Rn = 0

Xn

Zn = Rn + jXn

Rn = .5 Rn = 1 Rn = 2

Xn = 1

Xn = 0

Rn

Xn = –1

Rn = 0

Rn = .5

Xn = –1

Xn = 1

Rn = 1

Rn = 2

Zn is a complex number and can be represented by a point on the Zn�plane�
and � is a complex number and can be represented by a point on the complex
� plane�

�



We noted that from Equation ��� that�

�i� When Zn 
 �� � 
 ��
�ii� When Zn 
 � or Rn 
 � Xn 
 �� � 
 ��
�iii� When Zn �� in any direction� �� �
�iv� When Zn 
 jXn� j�j 
 �
�v� When Zn 
 j� or Rn 
 �� Xn 
 � � 
 j�
�vi� When Zn 
 �j� or Rn 
 �� Xn 
 �� � 
 �j�

If one works out the mapping from Zn�plane to ��plane completely� one
	nds that the Rn 
 � line on Zn�plane maps onto the unit�circle on the ��
plane� Furthermore� the other Rn 
 constant lines map into circles as shown�
The Xn 
 constant lines map into arcs like the Xn� lines as shown� Hence�
if one puts grids on the ��plane� one can read o� the Rn and Xn associated
with the corresponding � immediately� and� given the value of �� one can
read o� the values of Rn and Xn immediately�

The mappings ��� and ��� are known as bilinear transforms� A bilinear
transform always maps a circle onto a circle�

Properties of a Smith Chart

�i� The normalized admittance Yn 
 �Zn� or the reciprocal of Zn� can be
found easily from a Smith Chart� because

� 

Zn � 

Zn � 



� �

Zn

 � �

Zn



� Yn
 � Yn


 �
Yn � 

Yn � 
� ���

�ii� The change of impedance along the line is obtained by adding or sub�
tracting phase to ��z� via the relationship

��z� 
 �ve
�j�z� ���

�iii�

VSWR 

 � j�vj

� j �v j

 Rnmax� ���

since the Smith Chart is a graphical tool to solve Equation ���� and j�vj
is real� corresponding to a number on the Xn 
 � line� Notice that
 � VSWR �� always�

�
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�� Examples on Using the Smith Chart

�a� Find the voltages at A on the transmission line�

Z0 = 50 W, v = 1.5 × 108 ms–1

(30+j25) Ω

B

z = 025 MHzz = –l  = –1 m

20 Ω

A
Vs =

10 sin ωt
volts

ZL

Zs

The voltage source sets up a forward going and a backward going wave
on the transmission lines� Hence�

V �z� � V�e
�j�z 	 �vV�e

j�z� �
�

The corresponding current is

I�z� �
V�
Z�

e�j�z � �v
V�
Z�

ej�z� ���

In impedance at position Z is

Z�z� �
V �z�

I�z�
� Z�

e�j�z 	 �ve
j�z

e�j�z � �vej�z
� Z�


 	 ��z�


� ��z�
� ���

where

��z� � �ve
�j�z� �v �

ZL � Z�

Zl 	 Z�
� ��

We can use the Smith Chart to �nd Z��l�� To use the Smith Chart� we have
to normalize all the impedances with respect to the characteristic impedance
of the line� Hence�

ZnL �
ZL

Z�
�

�� 	 j��

��
� ��� 	 j���� ���

We can locate ZnL on the Smith Chart which is the complex � plane� ����
or �v can also be deduced from the Smith Chart� Since ��z� is given by ���
at z � �l� we have

���l� � �ve
��j�l� ���

�



At f � ��MHz� and with v � 
�� � 
�� ms��� � � v�f � �m� Then
�l � ��

�
l � �

�
l� Therefore�

���l� � �ve
�j ��

�
l� ���

At z � �l � �
m����
� � �ve
�j ��

� � From the Smith Chart� we can read

Zn��
� � ��
�� j���� or Z��
� � 
����� j
��� ���

So� an equivalent circuit for the point A is�

20 Ω

sV  =  10 sin ωt 
Zs

Z(–1) (107.5–j15) Ω

A

In phasor representation� VS � 
�e�j
�

� � �j
�� Hence�

VA � VS
Z��
�

ZS 	 Z��
�
� �j
�


����� j
�


����� j
�
�


����e�j���
�


�����e�j���
e�j��

�


�V

� ���e�j����
�

V� ���

Since
VA � V ��
� � V�e

j��
 	 ���
��� �
��

we can �nd Vo from the above� Once Vo is found� we can �nd VB from

VB � V ��� � Vo�
 	 �v�� �

�

0.2 0.5 1 2

 j0.2

−j0.2

0

 j0.5

−j0.5

0

 j1

−j1
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 j2

−j2
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o

Γ(-l)
Z(-l)

z
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ρ
V

�



�b� Find ZL from VSWR and dmin using a Smith Chart

The voltage on the transmission line is

V �z� � Vo�e
�j�z 	 �ve

	j�z� � Voe
�j�z�
 	 ��z��� �
��

If V �z� � jV �z�jej�
z�� the real time voltage can be written as

V �z� t� � �e�jV �z�jej�
z�ej�t� � jV �z�j cos ��t	 ��t��� �
��

Hence the amplitude of the real time voltage is proportional to jV �z�j which
is the voltage standing wave pattern�

|V(z)|

0 z
load

Γ(z) for
voltage min.

toward
load

z = –dmin

5λ/16
2.5 Re Γ

= VSWR

ρv

Vmax

Vmin

–dmin

Rnmax = 2.5

For example� we may be given that the VSWR � ��� on the line� Zo �
���� and dmin � ���
�� in order to �nd ZL�

First� we note that jV �z�j � j
 	 ��z�j where ��z� � �ve
�j�z� Note that

Vmin occurs when ��z� is purely negative� When z varies� ��z� traces out a
constant circle on the Smith Chart� since j��z�j � j�vj is independent of z�
Since the j��z�j circle must intersect the real � axis at Rn � ��� since the
VSWR� ���� we can deduce that magnitude of j��z�j � j�vj� Since z � �dmin

point corresponds to ��z� as shown above� and the load is ���
� from the
dmin point� we can �gure out �v�s location on the Smith Chart� We can read
o� ZnL � 
� 	 j
�
 on the Smith Chart� Hence ZL � �
��� j�������

�
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�� Complex Power on a Transmission Line

Complex Power

Since we are dealing with phasors� it is convenient to de�ne a complex
power which has an imaginary part as well as a real part� We shall de�ne
the meaning of complex power�

A complex power is de�ned as

�P � �V �I� � 	
�

i�e� the product of a voltage phasor and a current phasor at a given point� If

�V � j �V jej�V � �I � j�Ijej�I � 	��

then
�P � j�V jj�Ijcos 	�V � �I� � sin 	�V � �I�� � 	��

The corresponding real time voltage and current are

V 	t� � j�V j cos 	�t� �V �� I	t� � j�Ij cos 	�t� �I� � 	��

Then� the instantaneous power is

P 	t� � V 	t�I	t� � j�V jj�Ij cos 	�t� �V � cos 	�t� �V � �I � �V �

� j�V jj�Ij cos�	�t� �V � cos 	�I � �V �

� cos 	�t� �V � sin 	�t� �V � sin 	�I � �V ��� 	��

The time average of P 	t�� de�ned as

hP 	t�i � hV 	t�I	t�i � lim
T��




T

Z T

�

dtP 	t�

� j�V jj�Ijhcos�	�t� �V �i cos 	�I � �V �

� hcos 	�t� �V � sin 	�t� �V �i sin 	�I � �V ��� 	��

Since

hcos�	�t� �V �i �



�
� hcos	�t� �V � sin	�t� �V �i � � � 	��

we have

hP 	t�i �



�
j �V �Ij cos	�I � �V � � 	��

�



Comparing with 	��� we see that

hP 	t�i �



�
�e �P � � 	��

The imaginary part of the complex power is proportional to the second term
in 	��� and hence� the imaginary part of the complex power is proportional to
a part of the instantaneous power that averages to zero� Consequently� the
imaginary part of the complex power is called reactive power� For example�
a purely reactive device dissipates no power on the average� but instantaneous
power is being constantly absorbed and released by a reactive device� The
current and voltage through a reactive device is ��� out�of�phase� and the
complex power is purely imaginary or purely reactive�

Complex Power on a Transmission Line

The voltage on a transmission line could be written as

�V 	z� � V�
�
e�j�z � �ve

j�z
�

� V�e
�j�z
 � �	z�� � 	
��

The current on the line could be written as

�I	z� �
V�

Z�

e�j�z 
� �	z�� � 	

�

The complex power is given by

�P � �V �I� �
jV j�

Z�


 � �	z��
� �	z��� � 	
��

which reduces to

�P �
jV j�

Z�


� j�	z�j� � �	z�� �	z��� � 	
��

or

�P � �V �I� �
jV j�

Z�


� j�vj
� � j��m�	z�� � 	
��

The time average power� de�ned to be

hP 	z� t�i �



�
�e �P 	z�� �

jV j�

�Z�

	
� j�vj
�� � 	
��

for a lossless transmission line� If �v � �� or when the load is matched to the
transmission line� 	i�e�� ZL � Z��� all the power carried in the forward going

�



wave is dumped into the load� Otherwise� part of the power is re�ected� The
power carried by the forward going wave is

hP�i �
jV j�

�Z�

� 	
��

and the power carried by the backward going wave is

hP�i �
jV j�

�Z�

j�vj
� � 	
��

Note that hP 	z� t�i is independent of z because of energy conservation�

hP i � hP�i � hP�i� 	
��

is everywhere the same on the lossless transmission line because the total
power leaving the source all arrive at the load end with no loss on the lossless
transmission line� The transmission line can only absorb reactive power�
Hence� the reactive power in 	
�� is not a constant of position�

Power Delivered to the Load on a Transmission Line

Vs

VA Z0 VA

z = 0

→

Z(–l)

z =  –l

Z(–l)≡ Vs

IA
ZsZ0

ZL

To �nd the power delivered to the load on a lossless transmission line� we
can �rst �nd Z	�l� using formula 	��

�� Then� we can replace the transmis�
sion line circuit with the equivalent circuit for �nding VA� and IA� The real
power delivered to Z	�l� would be the same as the real power delivered to
ZL�

�P � VAI
�

A �
jVAj

�

Z�	�l�
�

���� Z	�l�

Zs � Z	�l�

����
�

jVSj
�

Z�	�l�
�

Z	�l�jVSj
�

jZs � Z	�l�j�
� 	
��

The time�average power delivered to the load is

hP i �



�
�e �P � �




�

R	�l�jVSj
�

jRs � jXS � R	�l� � jX	�l�j�
� 	���

where we have assumed that ZS � RS � jXS� and Z	�l� � R	�l� � jX	�l��
To optimize hP i� with respect to X	�l�� we choose X	�l� � �XS� hence�

hP i �



�

R	�l�jVSj
�

jRs � R	�l�j�
� 	�
�

�



The above is maximum when R	�l� � RS� Hence� maximum power is deliv�
ered to the load when

Z	�l� � Z�S � 	���

�
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��� Impedance Matching on a Transmission Line�

We note that when the impedance of a load is the same as the character�
istic impedance of the transmission line� there is no re�ected wave� and all
the forward going power is dissipated in the load� There are various ways to
achieve this impedance matching and we will discuss some of them below�

�a	 Quarter�Wave Transformer

A quarter wave transformer� like low�frequency transformers� changes the
impedance of the load to another value so that matching is possible�

ZL

Z0 ZT

→
Zin

λ/4

A quarter�wave transformer uses a section of line of characterstic
impedance ZT of �

�
long� To have a matching condition� we want Zin 
 Z��

From Equation �����	 we have

Zin 
 ZT

ZL  jZT tan
�
�

ZT  jZL tan
�

�



Z�

T

ZL

� ��	

since tan�l 
 tan ��
�

�
�

 tan �

�

�� In order for Zin 
 Z�� we need that

Z�

T 
 Z�ZL � ZT 

p
Z�Zl� ��	

If Z� and ZL are both real� then ZT is real� and we can use a lossless line
to perform the matching� If ZL is complex� it can be made real by adding a
section of line to it�

Z0 ZT Z0

Z1Zin ZL

λ/4

�



Example

Given that ZL 
 ���  j��	�� Z� 
 ���� �nd the shortest l and ZT so that
the above circuit is matched� Assume that ZT is real and lossless�

We want Z� to be real and Zin to be Z� 
 ��� in order for ZT to be real
and the matching condition satis�ed� We �nd that ZnL 
 ���j���� In order
to make Zn� real� the shortest l from the Smith Chart is �

�
� Then Zn� 
 ����

and Z� 
 ����� Since Zin 
 ���� we need

ZT 

p
ZinZ� 


p
��� ��� 
 �����

in order for matching condition to be satis�ed�

Note that the quarter wave transformer only matches the circuit at one
frequency� Often time� it has a small bandwidth of operation� i�e�� it only
works in the frequencies in a small neighborhood of the matching frequency�
Sometimes� a cascade of two or more quarter�wave transformers are used in
order to broaden the bandwidth of operation of the transformer�

0.2 0.5 1 2

 j0.2

−j0.2

0

 j0.5

−j0.5

0

 j1

−j1

0

 j2

−j2

0

Z nL

l = 8
λ

Zn1

�b	 Single Stub Tuning

Another device for performing matching is a single stub �either shorted or
opened at one end	 which is shunted across the transmission line at z 
 �d
from the load�

�



ZL

Shorted
Stub

–d

l, Z0

Zin

Y(–d)
VSWR > 1

ZS

VS

The location d is chosen so that the admittance Y ��d	 looking toward
the load is Y�  jB �Y� 


�

Z�

	� The length l of the shorted stub is chosen so
that its admittance is �jB� Hence� when the stub is connected in parallel to
the transmission line at z 
 �d� the impedance Zin 
 Z�� so that matching
condition is achieved�

A shorted stub has impedance and admittance given by

Zs 
 jZ� tan �l� ��	

Ys 
 �jY� cot�l� ��	

An open�circuited stub can also be used� and the impedance and admittance
are given by

Zop 
 �jZ� cot �l� ��	

Yop 
 jY� tan�l� ��	
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Let ZL 
 ����j��	�� �nd the minimum d and l that will reduce the VSWR
of the main line to �� Assume that Z� 
 ����

We �nd that the normalized load ZnL 
 �  ���j as shown on the Smith
Chart� Since this problem involves parallel connections� it is more convenient
to work with admittances� YnL 
 �

ZnL
is as shown� When we move toward

the generator� Yn�z	 traces out a locus on the Smith Chart as shown� It
intersects the G 
 � circle as shown� after moving through ������� Therefore�
d 
 �������

Now� Yn��d	 
 �  j���� Hence� Ynstub 
 �j���� From the Smith Chart�
we note that the admittance for a short is in�nity� and is at the right end of
the Smith Chart� To get a Ynstub 
 �j���� we move toward the generator for
������� Hence� l 
 �������

Often time� it is not easy to change d� but quite easy to change l� We
note that both in the quarter wave transformer and the single stub tuner� we
have to change � parameters for tuning� We can provide these � degrees of
freedom by using two stubs� changing their length� but not their positions�

�c	 Double Stub Tuning �optional reading�

Both single stub tuning and quarter wave transformer matching require
changing the location of the stub or the transformer� In practice� this is
di�cult� and a double stub tuning removes the di�culty�

ZL

3
Z0A BZ0

Y1 Y2

Stub 1 Stub 2
1 Z0, 2 Z0,

�



YnL
C2

C1

Yn2

Yn1 = 1

Yn1 – Ynstub1
C3

P

Q R

Rotation by 
3

All possible values of Y   by 
transforming from all possible 
values of Y    by     . 3

n2

n1

2

All possible values of Y   
by changing     .

n2

1

All possible values of Y   
by changing     .

n1

��	 In order to have a matched circuit� we should have Y� 
 Y� so that
Yn� 
 �� However� if we change l�� the possible values of Yn� trace out a
circle C� as shown�

��	 If YnL is as shown� by changing l�� the possible values of Yn� trace out a
circle C� as shown�

��	 When l� is added� all the possible values of Yn� at A is transformed to B
by a rotation according to the length of l�� This constitute a circle C�

which is all the possible values of Yn� obtained from Yn�� There are only
two points� P and Q that the two circles C� and C� intersect� If we pick
P � then this point should correspond to the value of Yn��

Yn� 
 Ynl  Ynstub� �����	

We can �gure out Ynstub� and hence the length l��

��	 The length l� rotates the point P to the point R� Then R has the
impedance Yn� � Ynstub� 
 � � Ynstub�� We can �gure out Ynstub� from
the Smith Chart and hence the length l��

�d	 Ferranti E�ect

VS

= 10 V

z = –

Zo = 50 Ω

z = 0

RL = 25 Ω

� Find VSWR on the line� and if l is allowed to vary arbitrarily� �nd the
maximum voltage on the line�

�



We can �nd VSWR from the Smith Chart or by calculator�

P ��	 
 Pv 

��� ��

��  ��

 ��

�
�

VSWR 

�  jPvj
�� jPvj 


�

�

�

�


 ��

z = –

λ/2

Vs

|V(z)|

Vmax

Vmin

–dmin 0

The voltage at Z 
 �l is always �xed to be Vs� Hence� we can see that
jV �z	j on parts of the transmission line can be longer than jVsj� If l is chosen
so that Vs is at Vmin� then

Vmax 
 VSWR� Vmin 
 �� volts� � 
 �� volts�

This ampli�cation of voltage on a line is known as the Ferranti�s e�ect� If
the VSWR on the line is very high� Vmax can be so large that it reaches the
breakdown voltage of the line� This is something one should be cautious of
in designing transmission line circuits�

�
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��� Lossy Transmission Lines�

When R and G are not zero� we have a lossy transmission line� In this
case�

V �z� � V��e
��z 	 �ve

��z� �
�

where

� �
p
ZY �

p
�j�L	 R��j�C 	G� � �	 j��

The current is derived using the telegrapher�s equation to be

I�z� �
V�

Z�

�e��z � �ve
�z�� ���

where

Z� �

r
Z

Y
�

s
j�L	 R

j�C 	G
�

When R
L
� G

C
� then Z� becomes frequency independent� and Z� �

q
L
C
� Also�

� � j�
p
LC

�

 	

R

j�L

� �

�

�

 	

G

j�L

� �

�

� j�
p
LC

�

 	

R

j�L

�
���

From ���� we see that � � R

q
C
L
� R

Z�
while � � �

p
LC� Since � is

frequency independent� and the v � �
�
� �p

LC
is also frequency independent�

the transmission line is a distortionless line because any pulse that propagates
on the line will not be distorted� This is because a pulse can be thought of
as a superposition of Fourier harmonics� Each Fourier harmonic is a time
harmonic signal� On a distortionless line� all the Fourier harmonics propagate
at the same velocity and suer the same attenuation� Hence the pulse is not
distorted but only diminished in amplitude�

If we divide �
� by ���� we get

Z�z� �
V �z�

I�z�
� Z�


 	 ��z�


� ��z�
� ���

where

��z� � �ve
��z� ���

�



Note that ��� also implies that

��z� �
Z�z�� Z�

Z�z� 	 Z�

�
Zn�z�� 


Zn�z� 	 

� ���

Equations ��� and ��� can be solved using a Smith Chart� However� now we
have

j��z�j � j�vj e��z� ���

The amplitude of j��z�j is diminishing when we move from the load to the
source� From ���� we note that ��z� � � when z � ��� Z�z� � Z� when
z � ��� Hence� a long lossy transmission line is always matched� The locus
traced out by ��� is a spiral converging on the origin of the Smith Chart when
we move from the load to the source�

Also� the voltage standing wave pattern is given by

jV �z�j � jV�j e��z j
 	 ��z�j � ���

A plot of ��z� and jV �z�j are as shown� Furthermore� we can de�ne an ad
hoc VSWR given to be

VSWR �

 	 j��z�j

� j��z�j �


 	 j�vj e��z

� j�vj e��z � ���

which is dependent on z�

x ZnL

�



1

VSWRV(z)

0 z

,  VSWRV(z)V(z)

Power on a Lossy Line

With V �z� and I�z� given by �
� and ���� one can de�ne a complex power
on a lossy line to be

P �z� � V �z�I��z�� �
��

where
V �z� � V�e

��z�
 	 ��z�
�
� �

�

and

I�z� �
V�e

��z

Z�

�

� ��z�

�
� �
��

Hence�

P �z� �
jV�j�
Z�
�

e��z��
�z
�

 	 ��z�

��

� ���z�

�
� �
��

which is equal to

P �z� �
jV�j�
Z�
�

e��� z
�

� j��z�j� 	 �j�m��z�

�
� �
��

Since j��z�j � j�vj e�� z� we have

P �z� �
jV�j�
Z�
�

e��� z
�

� j�vj� e�� z 	 �j�m��z�

�
� �
��

�



We see that both the real part and the imaginary part of the complex power
are functions of position� This is because real power is dissipated as the wave
propagates� Hence� the real power at one point is not equal to the real power
at another point�

�
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��� Transients on a Transmission Line�

When we do not have a time harmonic signal on a transmission line� we
have to use transient analysis to understand the waves on a transmission line�
A pulse waveform is an example of a transient waveform�

We have shown previously that if we have a forward going wave for a
voltage on a transmission line� the voltage is

V �z� t� � f�z � vt�� �	�

The corresponding current can be derived via the telegrapher
s equation

I�z� t� �
	

Z�

f�z � vt�� ���

If instead� we have a wave going in the negative direction�

V �z� t� � g�z � vt�� ���

then the current from the telegrapher
s equations� is

I�z� t� � �
	

Z�

g�z � vt�� ��

Hence� in general� if

V �z� t� � V��z� t� � V
�

�z� t�� ���

I�z� t� � Y�
�
V��z� t�� V

�

�z� t�
�
� ���

where Y� � �

Z�
� and the subscript � indicates a positive going wave� while

the subscript � indicates a negative going wave�

�



�a� Re�ection of a Transient Signal from a Shorted Termination

Z  , v0

z = Lz = 0

+

–

V0

If we switch on the voltage of the above network at t � �� the voltage at
z � � has the form

V �z � �� t� � V�U�t�� ���

The voltage on the transmission line is zero initially� the disturbance at t � �
will create a wave front propagating to the right as t increases�

V(z, t)

V+

v

z = 0 z = vt z = L
t

V0

t < L
v

I(z, t)

V0 Y0

z = L
t

z = 0 z = vt

v

I+

When the wave reaches the right end termination� the voltage and the
current wave fronts will be re�ected� However� the short at z � L requires
that V �z � L� t� � � always� Hence the re�ected voltage wave� which is
negative going� has an amplitude of �V�� The corresponding current can be
derived from �� and is as shown�

�



Y0 V0

2Y0 V0

I(z, t)

Y0 V0
I–I–(z, t)

Y0 V0

I+
I+(z, t)

V(z, t) = V+ + V–
V0

–V0 V–

V–(z, t) t > L
v

t > L
vV0

V+

z = 0 z = L
z

0 z

z = L
z

t > L
v

z = 0 z = L
z

z = L

z = 0 z = L
z

z0

0

V+(z, t)

�



When the signal reaches the source end� it is being re�ected again� A
voltage source looks like a short circuit because the re�ected voltage must
cancel the incident voltage in order for the voltage across the voltage source
remains unchanged� Hence the negative going voltage and current are again
re�ected like a short� Hence� if one is to measure the voltage at z � �� it will
always be V�� However� the current at z � � will increase inde�nitely with
time as shown�

5 Y0 V0

Y0 V0

3 Y0 V0
3 Y0 V0

I(z = 0, t) 7 Y0 V0

t = 2L/v t = 4L/v t = 6L/v
t

0

The current will eventually become in�nitely large because the transmis�
sion line will become like a short circuit to the D�C� voltage source� Therefore�
the current becomes in�nite�

�b� Open�Circuited Termination

If we have an open�circuited termination at z � L� then the current has
to be zero always� In this case� the re�ected current is negative that of the
incident current such that I�z � L� t� � � always� For example� if the source
waveform looks like as shown below� the re�ected waveform will behave as
shown�

�



V+
V0

2 V0

I–

I–

Y0 V0

I+

I+V0 Y0

V0

z = v(t–t1)

V0

VS(t)

t

V(z, t)

t < L/v

z = 0 z = vt z = L
z

I(z, t)

t < L/v

z = 0 z = vt z = L
z

I(z, t)
t > L/v

z = L
z

V(z, t)

0

t > L/v

z

0

0

t1

z = v(t–t1)

V+

�



�c� Resistive Termination

We can think of transient signals as superpositions of time harmonic
signals� This is a consequence of Fourier analysis� We see that the voltage
re�ection coe�cient is �	 for a shorted termination for all frequencies� Hence�
the voltage re�ection coe�cient is �	 for a transient signal� By a similar
argument� the voltage re�ection coe�cient for an open�circuited termination
is �	�

When the termination is resistive on a lossless transmission line� we recall
that the voltage re�ection coe�cient is

�v �
ZL � Z�

ZL � Z�

�
RL � Z�

RL � Z�

� ���

Hence� the re�ection coe�cient is frequency independent� All frequency com�
ponents in a transient signal will experience the same re�ection� Hence� �v is
also the re�ection coe�cient for a voltage pulse�

Zin

R A B

R

+

–

V0

z = 0 z = L

Z  , v0

Consider� for example� a transmission line being driven via a source re�
sistance R and a load termination R� If R � �

�
Z�� let us see what happens

when we turn on the switch�

For t � L

V
� the transmission line appears to be in�nitely long to the

source� Hence� Zin looks like Z� to the source� Hence� VA � Z�

Z��R
V� �

�

�
V�

for R � �

�
Z�� Hence� we have a wavefront of �

�
V� propagating to the right for

t � L

V
�

�



I+

8 Y0 V0/9
2 Y0 V0/3

–2 V0/9

2 V0/3

V(z, t)

0

V+

2L/v > t > L/v

z
z = L

I(z, t)

z
z = L

0

4 V0/9

V– = – 2 V0/9

I– = 2 V0 Y0/9

For t � L

V
� a re�ected voltage wave is generated at the termination and

its amplitude is �

�
�vV�� �v � �

�

�
for this termination�

2 V  /30

V(z, t)

–2 V  /90
0

V+

2L/v > t > L/v

4 V0

9
z

z = L
2 V0

9
V  = ––

2 Y0V  /30

I(z, t)

2 V0Y  /90I  = –

I+

8 Y0V  /90

z
z = L0

For t � �L
V
� a voltage source looks like a short to the transient signal� The

re�ection from the left is again ��

�
for the voltage and ��

�
for the current�

�



2 V  /30

V(z, t)
4 V0

9
z

14 V0
27

V1+ = 2
3 V0

V2+ = 2 V0/27

V– = –2 V0/9

I(z, t)
Y0V  0

26
27 Y0V  0

8
9

I1+ = 2 Y0V  0 /3

I 2+ = 2 Y0 /27V0 = 2 Y0 /9V0I–
z = L

z

z = L
0

0

When t � �� the voltage and current on the line will settle down to a
steady state� In that case� we have only DC signal on the line� and we need
only to use DC circuit analysis to �nd the steady state solution� At DC� the
transmission line becomes �rst two pieces of wires� VA � VB � R

�R
V� �

�

�
V��

The current through the circuit is V�

Z�
� If one is to measure VA as a function

of time� it will look like

26 V0 Y0/27V0 Y0
2
3

V0 Y0

IA(t)

2 V0
3 V0/2

14 V0/272 V0/3
VA(t)

2L/v 4L/v 6L/v
t

2L/v 4L/v 6L/v
t

0

0

Transient analysis has important application to computer circuitry� We
note that when we switch on a circuit with a delay line� we do not immediately
arrive at the desired steady state value when we have a transmission line or
a delay line� The settling time depends on the length of the line involved�

�
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��� Properties of Fields in a Transmission Line�

The �eld or wave in a transmission line is TEM �Transmission Electro�
Magnetic� because both the H��eld and the E��eld are transverse to the
direction of propagation� If the wave is propagating in the 	z�direction
 then
both Ez and Hz are zero for such a wave� In such a case
 the �elds are

E � Es�H � Hs� ���

where we have used the subscript s to denote �elds transverse to the direction
of propagation� We can also de�ne a del operation such that

r � rs  	z
�

�z
� ���

where rs is transverse to the 	z�direction
 and in Cartesian coordinate
 it is
rs � 	x �

�x
 	y �

�y
� From

r�H � �
�E

�t
� ���

or �
rs  	z

�

�z

�
�Hs � �

�E

�t
� ���

Since rs �Hs points in the 	z�direction
 	z �
�z
�Hs is 	z�directed
 we have

rs �Hs � �� ���

�

�z
�	z �Hs� � �

�Es

�t
� ���

Similarly
 from rs � Es � ���Hs

�t

 we can show that

rs � Es � �� ���

�

�z
�	z �Es� � ���Hs

�t
� ���

Equations ��� and ��� shows that the transverse curl of the �elds are zero�
This implies that the �elds in the transverse directions of a transmission
line resembles that of the electrostatic �elds� Furthermore
 Equations ���
and ��� couple the Es and Hs �elds together� These two equations are the
electromagnetic �eld analogues of the telegrapher�s equations�

�



��������
��������
��������
��������
��������
��������
��������
��������

Contour
C

b

H φ Eρ

I ρ
a

A current in a coaxial cable will produce a magnetic �eld polarized in the
� direction� From Ampere�s Law
 we have

I
C

Hs � dl �
Z
A

J � ds � I� ���

or Z
��

�

� d�H� � I� ����

Hence


H���� z� t� �
I�z� t�

���
� ����

If we assume that the inner conductor in the coaxial line is charged up with
the line charge Q in coulomb	m
 then from

H
�E � 	nds � Q
 we have

����E� � Q� ����

or

E� �
Q

����
� ����

Since the potential between a and b is
R b

a
E� d�
 we have

V �

Z b

a

E� d� �
Q

���
ln

�
b

a

�
� ����

Hence


E���� z� t� �
V �z� t�

� ln� b
a
�
�

Q�z� t�

����
� ����

The ratio Q

V
is the capacitance per unit length
 and it is

C �
���

ln� b
a
�
� ����

�



If Es � 	�E�
 Hs � 	�H�
 equations ��� and ��� become

�

�z
H� � ���E�

�t
� ����

�

�z
E� � ���H�

�t
� ����

Substituting ���� for H� and ���� for E�
 we get

�

�z
I�z� t� � � ���

ln� b
a
�

�V

�t
� ����

and
�

�z
V �z� t� � �� ln� b

a
�

��

�I

�t
� ����

This is just the telegrapher�s equations derived from Maxwell�s equations�
C is given by ���� while the inductance per unit length L is obtained by
comparing ���� with the telegrapher�s equations

L � �
ln� b

a
�

��
� ����

Note that the velocity of the wave on a transmission line is

v �
�p
LC

�
�p
��

� ����

which is independent of the dimensions of the line� This is because all TEM
waves have velocity given by �p

��
�

�
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��� Skin Depth and Plane Wave in a Lossy Medium�

We learn earlier that in a lossy medium� J � �E� and from

r�H � �
�E

�t
� J � �

�E

�t
� �E� �	


Using phasor technique� we can convert the above to

r�H � j��E� �E � j��E� ��


where
� � �� j

�

�
� ��


is the complex permittivity� Furthermore� using that

r� E � �j��H� ��


and that r �H � �� r �E � �� we can show that

r�E � �����E� ��


r�H � �����H� �


�Refer to x � for details�� If we assume that E � �xEx�z
� then� we can show
that

d�

dz�
Ex�z
� ��Ex�z
 � �� ��


where
� � j�

p
�� � 	� j
� ��a


The general solution to ��
 is of the form

Ex�z
 � c�e
��z � c�e

�z� ��


If we assume that c� � �� we have only

Ex�z
 � c�e
��z� ��


We can convert the above into a real time quantity using phasor techniques�
or

Ex�z� t
 � jc�j �e�e��z�j�z�j���j�t�
� jc�j e��z cos��t� 
z � ��
� �	�


�



where we have assumed that c� � jc�j ej��� Hence� we see that Ex�z� t
 is
a wave that propagates to the right with velocity v � �

�
and attenuation

constant 	� We can �nd 	 from equation ��a
� and

� � 	� j
 � j�

r
�
�
�� j

�

�

�
� j�

r
��
�
	� j

�

��

�
� �		


The �rst term on the RHS of �	
 is the displacement current term� while the
second term is the conduction current term� From ��
� we see that the ratio
�
��

is the ratio of the conduction current to the displacement current in a lossy
medium� �

��
is also known as the loss tangent of a lossy medium�

�i
 When �
��
� 	� the loss tangent is small� and the conduction current com�

pared to the displacement current is small� The medium behaves more
like a dielectric medium� In this case� we can use binomial expansions to
approximate �		
 to obtain

� � j�
p
��

�
	� j

	

�

�

��

�
�

	

�
�

r
�

�
� j�

p
��� �	�


where

	 �
	

�
�

r
�

�
� 
 � �

p
��� �	�


�ii
 When �
��
� 	� the loss tangent is large because there is more conduc�

tion current than displacement current in the medium� In this case� the
medium is conductive� According to equation �		
� when �

��
� 	� we

have

� � j�

r
�j ��

�
�
p
j��� � �	 � j


r
���

�
� �	�


Hence

	 � 
 �

r
���

�
�

	

�
� �	�


If we substitute 	 � 
 � �

�
into �	�
� we have

Ex�z� t
 � jc�j e
�z

� cos
�
�t� z

�
� ��

�
� �	


�
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This signal attenuates to e�� of its original strength at z � �� Hence �

is also known as the penetration depth or the skin depth of a conductive
medium� For other media� the penetration is �

�
� but for a conductive medium�

it is

� �

r
�

���
�

r
	

f��
� �	�


This skin depth decreases with increasing frequencies and increasing conduc�
tivities�

�iii
 When �
��
� 	� it is a general lossy medium� and we have to resort to

complex arithmatics to �nd 	 and 
�
If we square �		
� we have

	� � 
� � �j	
 � ������� j
�

�

� �	�


or
	� � 
� � ������ �	�a


�	
 � ���� �	�b


Squaring �	�a
 and adding the square of �	�b
 to it� we have

�	� � 
�
� � ��	

� � �	� � 
�
� � ������ � ������� ���


or
	� � 
� � ��

p
���� � ��� ��	


Combining with �	�a
� we deduce that

	� �
	

�
���

p
���� � �� � ����
� ���a


�




� �
	

�
���

p
���� � �� � ����
� ���b


Notice that when � � �� 	 � ��
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��� Group and Phase Velocities�

If we have two waves that are slightly di�erent in frequency � and phase
constant �� a linear superposition of them is still a solution of the wave
equation

Ex � E� cos���t� ��z	 
E� cos���t� ��z	� ��	

If �� � � ���� �� � � ���� �� � � 
��� �� � � 
��� then

Ex � E� cos�t� �z � ���t���z	� 
E� cos�t� �z 
 ���t���z	�� ��	

Using the fact that cos�A�B	 
 cos�A
 B	 � � cosA cosB� we have

Ex � �E� cos��t� �z	 cos���t���z	� ��	

or

Ex�z� t	 � �E� cos

�
�

�
�

�
t� z

��
cos

�
��

�
��

��
t� z

��
� ��	

At t � �� we have Ex � �E� cos �z cos��z which is sketched below�
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E
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The �rst factor in ��	 is rapidly varying while the second factor is slowly
varying� The slowly varying term amplitude�modulates the rapidly varying
term giving rise to the picture as shown�

We have learnt that a function of the form f�vt � z	 propagates in the
positive z�direction with velocity v� From �����	� we see that the rapidly

�



varying term propagates with velocity �
�
� Since this represents the propa�

gation of the phases in the rapidly oscillating part in the �gure� this is also
known as phase velocity�

vp �
�

�
� ��	

The slowly varying part propagates with the velocity ��
��

� which is d�
d�

in the
limit that �� and �� � �� This represents the velocity on the envelope in
the picture and hence� it is known as the group velocity�

vg �
d�

d�
or v��g �

d�

d�
� ��	

If � � �
p
��� the phase velocity vp �

�
�
� �p

��
� the group velocity from ��	

is also �p
��
� Hence� the group and the phase velocities are the same is � is a

linear function of ��

If � is not a linear function of �� then� the phase velocity and the group
velocities are functions of frequencies� and the medium is known to be disper�
sive� In a dispersive medium� a pulse propagates with subsequent distortions
because the di�erent harmonics in the pulse propagate with di�erent phase
velocity� Example of a dispersive medium is a conductive medium where
� � �

�
�
p

���

�
� is not a linear function of ��

In a distortionless line� the phase velocity is made to be frequency inde�
pendent so that a pulse propagates without distortions�

Furthermore� a phase velocity can be larger than the velocity of light
while the group velocity is always less than the speed of light� This is because
energy propagates with the group velocity so that special relativity is not
violated�

�
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��� Real Poynting Theorem�

Since E�H has the dimension of watts�m�� we can study its divergence
property and its conservative property� Using the vector identity in ����	
�
we have�

r � �E�H
 � H � r � E� E � r �H� ��


From Maxwell�s equations� we can replace r � E by ��B

�t
and r � H by

�D

�t
 J� Hence�

r � �E�H
 � �H�B

�t
� E � �D

�t
� E � J

� ��H � �H
�t

� �E � �E
�t

� E � J� ��


We can show that
�

�

� jHj�
�t

� H � �H
�t

� ��


Hence�

r � �E�H
 � � �

�t

�
�

�
� jHj�  �

�
� jEj�

�
� E � J� ��


We can de�ne

S � E�H Poynting vector �Power Flow Density wattm��
� ��


UH �
�

�
� jHj�Magnetic Energy Density �joulem��
� �	


UE �
�

�
� jEj� Electric Energy Density�joulem��
� ��


E � J � Energy Dissipation Density�wattm��
� ��


UH and UE represent the energy stored in the magnetic �eld and electric �eld
respectively� Alternatively� ��
 becomes

r � S � � �

�t
�UH  UE
� E � J� ��


�



Using the divergence theorem� ��
 can be written in integral form�

I
A

S � �n dA � � �

�t

Z
V

�UH  UE
 dV �
Z
V

E � J dV� ���


A
V

S

The equation says that the LHS will be positive only if there is a net
out�ow of the �ux due to the vector �eld S� If there is no current inside V so
that E � J � �� then this is only possible if the stored energy UH  UE inside
V decreases with time�

If J � �E� then the last term is � R � jEj� dV is always negative� Hence�
the last term tends to make

H
S
S � �n dA negative� because energy dissipation

has to be compensated by power �ux �owing into V � The Poynting theorems
��
 and ���
 are statements of energy conservation� For example� for a plane
wave�

E � �xf�z � vt
� H � �y

r
�

�
f�z � vt
� ���


then

S � E�H � �z

r
�

�
f ��z � vt
� ���


Also�

UE  UH �
�

�
�f ��z � vt
 

�

�
�f ��z � vt
 � �f ��z � vt
� ���


Therefore�

S � �z
�p
��

�f ��z � vt
 � �zv�UE  UH
� ���


Hence� the velocity times the total energy density stored equals the power
density �ow in a plane wave�

�
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��� Complex Poynting Theorem�

The complex Poynting vector is de�ned to be

S � E�H�� ��	

It has the dimension of watt�m� and it denotes the 
ow of complex power�
�We have used underbars to denote complex vectors	�

Before we proceed further� let us look at Maxwell�s equations for the
phasor �eld� In phasor representation� Maxwell�s equations become

r�H � J j��E� ��	

r�E � �j��H� ��	

First� we study the divergence property of ��	�

r � �E�H�	 � H� � r � E� E � r �H�� ��	

Substituting ��	 and ��	 into ��	� we have

r � �E�H�	 � �j��H �H�  j��E �E� �E � J�

� �j��� jHj� � � jEj���E � J�� ��	

Comparing with �����	� ��	 involves the di�erence of the stored energy terms
rather than the sum�

We have shown that for two quantities�

A�z� t	 � �e�A�z	ej�t�� ��	

B�z� t	 � �e�B�z	ej�t�� ��	

The time average of A�z� t	B�z� t	� denoted by hA�Bi is given by

hA�Bi � �

�
�e�A�z	B��z	�� ��	

Therefore�

hSi � hE�Hi � �

�
�e�E�H�� �

�

�
�e�S�� ��	

�



The imaginary part of S corresponds to instantaneous power that time aver�
ages to zero� It is also known as the reactive power� We can also convert ��	
into integral from using the divergence theorem�

I
A

�E�H�	 � �ndA � �j�
I
V

�� jHj� � � jEj�� dV �
I
V

� jEj� dV� ���	

where we have assumed that J � �E� If �� �� and � are all real� then

I
A

�e�E�H�	 � �n dA � �
I
V

� jEj� dV� ���	

and I
A

�m�E�H�	 � �ndA � ��
I
V

�� jHj� � � jEj�� dV� ���	

We see that the real part of the power corresponds to power dissipated in
V while the imaginary part of the power corresponds to di�erence in the
magnetic energy stored and the electric energy stored� Hence� if a system
has equal amount of magnetic and electric energy stored� it does not consume
any reactive power�

Example of Reactive Power

Vg

Ig I2

I1

C
L

We notice that in the complex Poynting theorem� the reactive power is
proportional to ���jHj� � �jEj�	� It is zero when �jHj� � �jEj�� or when
the stored magnetic �eld energy equals the stored electric �eld energy� To
comprehend this further� we look at a simple LC circuit driven by a time�
harmonic voltage source�

At the resonant frequency of the tank circuit� � � ��
p
LC� its input

impedance is in�nite� and hence Ig � �� Therefore� there is no power deliv�
ered from the generator� be it real or reactive� However� I� � �I� �� � at
resonance� and as the tank circuit is resonating� the electric �eld energy stored
in C is being converted into the magnetic �eld energy stored in L� Therefore�

�



�

�
LjIj� � �

�
CjV j� can be easily veri�ed for a resonating tank circuit� This is

precisely the case mentioned above�
Away from resonance�

Ig � Vg�j�C 
�

j�L
	 � j�CVg��� �

��LC
	�

Ig is at ��� out�of�phase with Vg� and the complex power� VgI
�

g is purely
imaginary� This implies that there is no time average power delivered by the
source Vg� but it delivers nonzero reactive power� Away from resonance� the
magnetic and electric stored energies are not in perfect balance with respect
to each other� and we need to augment the system with external reactive
power�

�
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��� Wave Polarization�

We learnt that

E � �xEx � �xE� cos��t� �z�� �	�

is a solution to the wave equation because r �E � �� Similarly


E � �yEy � �yE� cos��t� �z � ��� ���

is also a solution to the wave equation� Solutions �	� and ��� are known as
linearly polarized waves
 because the electric eld or the magnetic eld are
polarized in only one direction� However
 a linear superposition of �	� and
��� are still a solution to Maxwell�s equation

E � �xEx�z� t� � �yEy�z� t�� ���

If we observe this eld at z � �
 it is

E � �xE� cos�t� �yE� cos��t� ��� ���

When � � ���


Ex � E� cos�t Ey � E� cos��t� ����� ���

When �t � ��� Ex � E�� Ey � �� ���

When �t � ���� Ex �
E�p
�
� Ey � �E�p

�
� ���

When �t � ���� Ex � �� Ey � �E�� ���

When �t � 	���� Ex � �E�p
�
� Ey � �E�p

�
� ���

When �t � 	���� Ex � �E�� Ey � �� �	��

If we continue further
 we can sketch out the tip of the vector eld E� It
traces out an ellipse as shown when E� �� E�� Such a wave is known as an
elliptically polarized wave�

�



y

ωt=270˚
ωt=315˚

ωt=0

ωt=225˚

xωt=180˚

ωt=135˚

E1

E2

–E1

–E2 ωt=90˚
ωt=45˚

When E� � E�
 the ellipse becomes a circle
 and the wave is known as
a circularly polarized wave� When � is ����
 the vector E rotates in the
counter�clockwise direction�

A wave is classied as left hand elliptically �circularly� polarized when
the wave is approaching the viewer� A counterclockwise rotation is classied
as right hand elliptically �circularly� polarized�

When � �� ����
 the tip of the vector E traces out a tilted ellipse� We
can show this by expanding Ey in ����

Ey � E� cos�t cos�� E� sin�t sin�

�
E�

E�

Ex cos�� E�

�
	�

�
Ex

E�

�
�
� �

�

sin �� �		�

Rearranging terms
 we get

aE�

x
� bExEy � cE�

y
� 	� �	��

where

a �
	

E�

�
sin� �

� b �
� cos�

E�E� sin
� �

� c �
	

E�

�
sin� �

� �	��

Equation �	�� is of the form

ax� � bxy � cy� � 	� �	��

which is the equation of a tilted ellipse�

�



x′

B

θ

y′

x

y

(x, y)
(x′, y′)

A

The equation of an ellipse in its self coordinate is�
x�

A

��

�

�
y�

B

��

� 	� �	��

where A and B are the semi�axes of the ellipse� However


x� � x cos � � y sin �� �	��

y� � x sin � � y cos �� �	��

we have

x�
�
cos� �

A�
�

sin� �

B�

�
� xy sin ��

�
	

A�
� 	

B�

�
� y�

�
sin� �

A�
�

cos� �

B�

�
� 	�

�	��
Equating �	�� and �	��
 we can deduce that

� �
	

�
tan��

�
� cos�E�E�

E�

�
� E�

�

�
� �	��

AR �

�
	 � �

	��

� �

�

� ����

where

� �

�
	� �E�

�
E�

�
sin� �

E�

�
�E�

�

� �

�

� ��	�

AR is the axial ratio which is the ratio of the two axes of the ellipse� It is
dened to be larger than one always�

�
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��� Representation of a Plane Wave�

When r �E � �� the electric �eld satis�es the wave equation

r�E� ��E � �� 	
�

where �� � ����� We have learnt that one of the many possible solutions to
the above equation is

E � �xE�e
�j�z� 	�

The expression e�j�z� when viewed in three dimensions� has constant phase
planes or wave fronts which are orthogonal to the z�axis�

x

y z
0

Constant phase 
planes

To denote a plane wave propagating in other directions� we write it as

E � �aE�e
�j�xx�j�yy�j�zz� 	��

where �a is a constant unit vector� and E� a constant� If we substitute 	��
into 	
�� we obtain

����
x � ��

y � ��
z � ���E� � �� 	��

In order for 	�� to satisfy 	
� and that E� �� �� we require that

��
x � ��

y � ��
z � �� � ����� 	��

If we de�ne a vector � � �x�x � �y�y � �z�z� and r � �xx � �yy � �zz� then 	��
can be written as

E � �aE�e
�j��r� 	��

where the magnitude of � is

j�j � ���
x � ��

y � ��
z �

�

� � �� 	��

�



Equation 	�� is a concise way to write a solution to 	
�� Since r�E � � using
	��� we note that

r �E � �j��x�x � �y�y � �z�z� � �aE�e
�j��r� 	��

Therefore� in order for r �E � �� we require that

� � �a � �� 	��

To explore further how the function e�j��r look like� we assume � to be
pointing in a direction as shown in the �gure� The value of � � r is constant
on a plane that is orthogonal to ��

x

0
θ

θ′

r

r′

A
A′

A′′

S S′
S′′

Constant phase 
planes

z

β

That is
� � r � j�j jrj cos � � �	OA�� 	
��

for all r on the plane S that is orthogonal to �� Hence� S is the constant
phase plane of e�j��r � e�j��OA�� As one moves progressively in the � direc�
tion� the function e�j��r has a phase that is linearly decreasing with distance�
Therefore� e�j��r denotes a plane wave that is propagating in the � direction�
When � is pointing in the z�direction� such that � � �z�� then e�j��r � e�j�z�
which is our familiar solution of a plane wave propagating in the z�direction�

An example of a plane wave electric �eld satisfying Maxwell�s equations
is

E � �yE�e
�j�xx�j�zz� 	

�

where ��
x � ��

z � ��� The corresponding magnetic �eld can be derived using
Maxwell�s equations�

r� E � �j��H� 	
�

Hence�

H �
�


j��

�
�z
�

�x
Ey � �x

�

�z
Ey

�

� 	�z�x � �x�z�
E�

��
e�j�xx�j�zz� 	
��

�



In general� when r operates on a plane wave phasor described by e�j��r�
it transforms into �j�� This is obvious also from Equation 	��� Therefore�
from 	
�� we can express

H �



��
� � E� 	
��

Therefore� H is orthogonal to both E and �� or that H � E � �� and that
H�� � �� in addition to E�� � �� Furthermore� E�H points in the direction
of �� Therefore� for a plane electromagnetic wave� E� H� and � form a right�
handed orthogonal system� It is also a transverse electromagnetic 	TEM�
wave�

H

E

β

�
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��a� Re�ection and Transmission of a Simple Plane Wave O� an

Interface�

We have learnt that in an in�nite free space� a simple plane wave solution
exists that is given by

E � �xEx	z
 � �xE�e
�j��z�

H � �yHy	z
 � �yH�e
�j��z � �y

E�

��
e�j��z�

	�


where �� �
p
����� is the intrinsic impedance� and �� � �

p
���� is the

wavenumber� Also� �� � ���	� where 	� is the free space wavelength�

H

E
Region 0

µ0, ε0

0

Region 1
µ1, ε1

z

When the simple plane wave is normally incident on a at material inter�
face� we expect to have a reected wave in Region �� and a transmitted wave
in Region ��

In Region �� we can write the total �elds as

E� � �x
�
E�

� e
�j��z � E�� e

�j��z
�
� 	�


H� � �y

�
E�

�

��
e�j��z � E��

��
e�j��z

�

 	�


In Region �� the total �elds are

E� � �xE�

� e
�j��z� 	�


H� � �x
E�

�

��
e�j��z� 	�


where �� �
p
����� and �� � �

p
����� There are two unknowns in the

above expressions� E�� and H�

� � E�

� is known because it is the amplitude

�



if the incident �eld� We can set up two equations to �nd two unknowns by
matching boundary conditions at z � �� The requisite boundary conditions
are that the tangential components of the E �eld and H �eld should be
continuous�

By imposing tangential E continuous� we arrive at

E�

� �E�� � E�

� � 	�


whereas imposing tangential H conditions yields

E�

�

��
� E��

��
�

E�

�

��

 	�


Solving these two equations expresses E�� and E�

� in terms of E�

� �

E�� �
�� � ��
�� � ��

E�

� � 	�


E�� �
���

�� � ��
E�

� 
 	�


We de�ne the reection coe�cient to be

� �
�� � ��
�� � ��

� 	��


and the transmission coe�cient to be

T �
���

�� � ��

 	��


Notice that � � � � T �
When there is a mismatch at the interface� we expect most of the wave

to be reected� This occurs when �� � ��� In this case� � � ��� and T � ��
It also occurs when �� � ��� for which case� � � ��� T � ��

The above derivation also holds true when Region � is a conductive lossy
region� In this case� we replace �� with a comlex permittivity ��� which is
given by

��� � �� � j
��
�

 	��


Then �� �
p
����� where �� would be a complex number� Also� j�� becomes

�� � j�
p
����� � � � j�� which is a complex number also�

For a highly conductive medium like copper� ���� � ��� ��� � �j�����
and �� � 	� � j


p
����	���
� Consequently� �� � �� and � � ��� T �� ��

�
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Date�November �� �		�

��� Re�ections and Refractions of Plane Waves�

��������������������������������

Ei

Hi

βi β r

Hr

Er

Et

β t

Ht
z

y

θ i θ r

θ t

medium 1

µ  , ε1 1

µ  , ε2 2

medium 2

x

Perpendicular Case �Transverse Electric or TE case�

When an incident wave impinges on a dielectric interface� a re
ected wave
as well as a transmitted wave is generated� We can express the three waves
as

Ei � �yE�e
�j�i�r� ��

Er � �y��E�e
�j�r�r� ��

Et � �y��E�e
�j�t�r� ��

The electric �eld is perpendicular to the xz plane� and �i� �r� and �t are their
respective directions of propagation� The ��s are also known as propagation
vectors� In particular�

�i � �x�ix � �z�iz� ��

�r � �x�rx � �z�rz� ��

�tx � �x�tx � �z�tz� ��

Since Ei and Er are in medium �� we have

��

ix � ��

iz � ��

�
� ������� ��

��

rx � ��

rz � ��

�
� ������� ��

�



and for Et in medium �� we have

��

tx � ��

tz � ��

�
� ������� 	�

��� ��� and 	� are known as the dispersion relations for the components
of the propagation vectors� From the �gure� we note that

�ix � �� sin 	i� �iz � �� cos 	i� ���

�rx � �� sin 	r� �rz � �� cos 	r� ���

�tx � �� sin 	t� �tz � �� cos 	t� ���

To �nd the unknown �� and ��� we need to match boundary conditions for
the �elds at the dielectric interface� The boundary conditions are the equality
of the tangential electric and magnetic �elds on both sides of the interface�
The magnetic �elds can be derived via Maxwell�s equations�

Hi �
r� Ei

�j���

�
�i �Ei

���

� �z�ix � �x�iz�
E�

���

e�j�i�r� ���

Similarly�

Hr � �z�rx � �x�rz�
��E�

���

e�j�r�r� ���

Ht � �z�tx � �x�tz�
��E�

���

e�j�t�r� ���

Continuity of the tangential electric �elds across the interface implies

E�e
�j�ixx � ��E�e

�j�rxx � ��E�e
�j�txx� ���

The above equation is to be satis�ed for all x� This is only possible if

�ix � �rx � �tx � �x� ���

This condition is known as phase matching� From ���� ���� and ���� we
know that ��� implies

�� sin 	i � �� sin 	r � �� sin 	t� ���

The above implies that 	r � 	i� Furthermore�

p
���� sin 	i �

p
���� sin 	t� �	a�

If we de�ne a refractive index ni �
q

�i�i
����

� then �	a� becomes

n� sin 	i � n� sin 	t� �	b�

which is the well known Snell�s Law� Consequently� equation ��� becomes

� � �� � ��� ���

�



From the continuity of the tangential magnetic �elds� we have

��iz E�

���

� �rz
��E�

���

� ��tz ��E�

���

� ���

Since 	r � 	i� we have �iz � �rz� Therefore� ��� becomes

�� �� �
��

��

�tz

�iz
��� ���

Solving ��� and ���� we have

�� �
���iz � ���tz

���iz � ���tz
� ���

�� �
����iz

���iz � ���tz
� ���

Using ���� ���� and ���� we can rewrite the above as

�� �

� cos 	i � 
� cos 	t

� cos 	i � 
� cos 	t

� ���

�� �
�
� cos 	i


� cos 	i � 
� cos 	t
� ���

If the media are non�magnetic so that �� � �� � ��� we can use �	� to
rewrite ��� as

�� �

� cos 	i � 
�

q
�� ��

��
sin� 	i


� cos 	i � 
�

q
�� ��

��
sin� 	i

� ���

If
q

��
��
sin 	i � �� which is possible if ��

��
� �� when 	i �

�
�
� then �� is of the

form

�� �
A� jB

A� jB
� ���

which always has a magnitude of �� In this case� all energy will be re
ected�
This is known as a total internal re�ection� This occurs when 	i � 	c

where
q

��
��
sin 	c � �� or

	c � sin��

r
��

��
� �� � ��� �	�

�



When 	i � 	c� 	t � 	�� from �	�� The �gure below denotes the phe�
nomenon�

βi

θc

β t

less than
critical angle

larger than
critical angle

at critical angle

less than critical angle   

x

z

When 	i � 	c� �tz �
p
��

�
� ��

�
sin� 	i� or

�tz � �
p
����

�
�� ��

��
sin� 	i

� �

�

� ���

The quantity in the parenthesis is purely negative� so that

�tz � �jtz� ���

a pure imaginary number� In this case� the electric �eld in medium � is

Et � �y��E�e
�j�xx��tzz� ���

The �eld is exponentially decaying in the positive z direction� We call such
a wave an evanescent wave� or an inhomogeneous wave as opposed to
uniform plane wave� The magnitude of a uniform plane wave is a constant
of space while the magnitude of an evanescent wave or an inhomogeneous
wave is not a constant of space� The corresponding magnetic �eld is

Ht � �z�x � �xjtz�
��E�

���

e�j�xx��tzz� ���

�



The complex power in the transmitted wave is

S � Et �H�
t � �x�x � �zjtz�

j��j� jE�j�
���

e���tzz� ���

We note that Sx is pure real implying the presence of net time average power

owing in the �x�direction� However� Sz is pure imaginary implying that the
power that is 
owing in the �z�direction is purely reactive� Hence� no net time
average power is 
owing in the �z�direction�

Parallel case �Transverse Magnetic or TM case�

In this case� the electric �eld is parallel to the xz plane that contains the
plane of incidence�

����������������
����������������
����������������
����������������

Ei

Hi βi

βr

Hr

Er

Et

β t

Ht
z

y

θ i θ r

θ t

medium 1

µ  , ε1 1

µ  , ε2 2

medium 2

x

The magnetic �eld is polarized in the y direction� and they can be written
as

Hi � �y
E�


�
e�j�i�r� ���

Hr � ��y�kE�


�
e�j�r�r� ���

Ht � �y�k
E�


�
e�j�t�r� ���

We put a negative sign in the de�nition for �k to follow the convention of
transmission line theory� where re
ection coe�cients are de�ned for voltages�
and hence has a negative sign when used for currents� The magnetic �eld is
the analogue of a current in transmission theory�

�



In this case� the electric �eld has to be orthogonal to � and �y� and they
can be derived using

Ei � ��i �Hi

���

to be

Ei �
�y � �i

�
E�e

�j�i�r � �x�iz � �z�ix�
E�

��
e�j�i�r� ���

Er � �x�rz � �z�rx�
�kE�

��
e�j�r�r� �	�

Et � �x�tz � �z�tx�
�kE�

��
e�j�t�r� ���

Imposing the boundary conditions as before� we have

� � �k �
�tz

��

��

�iz
�k� ���

�� �k �

�


�
�k� ���

The above can be solved to give

�k �
���tz � ���iz

���iz � ���tz
�


� cos 	t � 
� cos 	i

� cos 	t � 
� cos 	i

� ���

and

�k �
����iz

���iz � ���tz


�


�
�

�
� cos 	i

� cos 	t � 
� cos 	i

� ���

In ���� �k will be zero if


�
�
cos� 	t � 
�

�
cos� 	i� ���

Using Snell�s Law� or �	�� cos� 	t � �� ����
����

sin� 	i� and ��� becomes

�� ����

����
sin� 	i �

����

����
cos� 	i� ���

Solving the above� we get

sin 	i �

�
�� ����

����
����
����

� ����
����

� �

�

� ���

Most materials are non�magnetic in this world so that � � ��� then

sin 	i �

r
��

�� � ��
� ���

�



The angle for 	i at which �k � � is known as the Brewster angle� It is
given by

	ib � sin��

r
��

�� � ��
� tan��

r
��

��
� �	�

At this angle of incident� the wave will not be re
ected but totally transmit�
ted� Furthermore� we can show that

sin� 	ib � sin� 	tb � �� ���

implying that

	ib � 	tb �
�

�
� ���

On the contrary� �� can never be zero for � � �� or non�magnetic materials�
Hence� a plot of

���k�� as a function of 	i goes through a zero while the plot of
j��j is always larger than zero for non�magnetic materials�

θi

ε1 < ε2
ρ⊥ , or

ρ
1

ρ

ρ⊥

0 90˚

At normal incidence� i�e�� 	i � �� �� � �k since we cannot distinguish
between perpendicular and parallel polarizations� When 	i � 	��� j��j ����k�� � �� On the whole� j��j �

���k�� for non�magnetic materials�

The above equations are de�ned for lossless media� However� for lossy
media� if we de�ne a complex permittivity � � � � j �

�
� Maxwell�s equations

remain unchanged� Hence� the expressions for ��� ��� �k� and �k remain the
same� except that we replace real permittivities with complex permittivities�

For example� if medium � is metallic so that � � �� then� 
� �
q

��
�
�

� ��

and �� � ��� and �� � �� Similarly� �k � �� and �k � ��

�
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��� In�nite Parallel Plate Waveguide�

σ → ∞
σ → ∞

y

z

x

x = 0 x = b

We have studied TEM �transverse electromagnetic� waves between two
pieces of parallel conductors in the transmission line theory� We shall study
other kinds of waves between two in�nite parallel plates� or planes� We have
learnt earlier that for a plane wave incident on a plane interface� the wave
can be categorized into TE �transverse electric� with electric �eld polarized in
the y	direction� Hence� between a parallel plate waveguide� we shall look for
solutions of TE type with E 
 �yEy� or TM �transverse magnetic� type with
H 
 �yHy� We shall assume that the �eld does not vary in the y	direction so
that �

�y

 ��

We have shown earlier that if r �E 
 �� the equation for the E �eld in a
source region is

�r� � �����E 
 �� ��

If r �H 
 �� the equation for the H �eld is

�r� � �����H 
 �� ���

Since �
�y


 �� r� 
 ��

�x�
� ��

�z�
in these two equations�

I� TM Case� H 
 �yHy�

In this case� �
��

�x�
�

��

�z�
� ����

�
Hy 
 �� ���

�



If we assume that
Hy 
 A�x�e�j�zz� ���

substituting ��� into ���� we have

�
d�

dx�
� ����� ��z

�
A�x� 
 �� ���

Letting ��x 
 ����� ��z � ��� becomes

�
d�

dx�
� ��x

�
A�x� 
 �� ���

where the independent solutions are

A�x� 


�
cos �xx

sin �xx
� ���

Hence� Hy is of the form

Hy 
 H�

�
cos �xx

sin �xx

�
e�j�zz� ���

where
��x � ��z 
 ���� 
 ��� ���

which are the dispersion relation for plane waves� We can also de�ne
�x 
 � cos �� �z 
 � sin � so that ��� is automatically satis�ed�

To decide a viable solution from ���� we look at the boundary conditions
for the E	�eld at the metallic plates� From r�H 
 j��E� we have

j��Ex 

�

�y
Hz � �

�z
Hy� ���

�where �
�y
Hz 
 � in the above equation� or

Ex 

�z

��
H�

�
cos �xx

sin �xx

�
e�j�zz� ��

and

j��Ez 

�

�x
Hy � �

�y
Hx� ���

�where �
�y
Hx 
 � in the above equation� or

Ez 
 � �x

j��
H�

�
sin �xx

� cos �xx

�
e�j�zz� ���

�



The boundary conditions require that Ez�x 
 �� 
 Ez�x 
 b� 
 �� Only the
�rst solution gives Ez�x 
 �� 
 �� Hence� we eliminate the second solution�
or

Ez 
 � �x

j��
H� sin��xx�e

�j�zz� ���

In order for Ez�x 
 b� 
 �� we require that

sin �xb 
 �� ���

or
�xb 
 m	� m 
 ���������� � � � � ���

and consequently�

�x 

m	

b
� m 
 ���������� � � � � ���

This is known as the guidance condition for the waveguide� Finally� we
have

Hy 
 H� cos
�m	

b
x
�
e�j�zz� ���

Ex 

�z

��
H� cos

�m	x

b

�
e�j�zz� ���

Ez 
 �
m	

j��b
H� sin

�m	x

b

�
e�j�zz� ����

where

�z 


�
�����

�m	

b

��� �

�

� ���

which is the dispersion relation for the parallel plate waveguide� Equation
��� can be written as

Hy 

H�

�
�ej�xx � e�j�xx�e�j�zz 


H�

�
�ej�xx�j�zz � e�j�xx�j�zz�� ����

The �rst term in the above represents a plane wave propagating in the positive
�z	direction and the negative �x	direction� while the second term corresponds
to a wave propagating in the positive x and z directions� Hence� the �eld in
between a parallel plate waveguide consists of a plane wave bouncing back
and forth between the two plates� as shown�

θ

θ

x

z
β = x β  + z β
–– ^ ^x z

β = –x β   + z β
–– ^ ^x z

�



Since we de�ne �x 
 � cos �� �z 
 � sin �� the wave propagates in a di	
rection making an angle � with the �x	direction� Since the guidance condition
requires that �x 
 m�

b

 � cos �� the plane wave can be guided only for

discrete values of ��

From ���� we note that for di�erent m�s� �z will assume di�erent values�
When m 
 �� �z 
 �

p
��� Ez 
 �� and we have a TEM mode� When

m 
 �� we have a TM mode of order m� we call it a TMm mode� Hence�
there are in�nitely many solutions to Maxwell�s equations between a parallel
plate waveguide with the �eld given by ���� ���� ����� and the dispersion
relation given by ��� where m 
 �� � �� �� � � � �

II� Cuto� Frequency

From ���� for a given TMm mode� if �
p
�� � m�

b
� then �z is pure imag	

inary� In this case� the wave is purely decaying in the �z	direction� and it is
evanescent and non�propagating� For a given TMm mode� we can always
lower the frequency so that this occurs� When this happens� we say that the
mode is cut o�� The cuto� frequency is the frequency for which a given
TMm mode becomes cuto� when the frequency of the TMm mode is lower
than this cuto� frequency� Hence�

�mc 

m	

b
p
��

or fmc 

m

�b
p
��



mv

�b
� ����

When

�m� �v

�b

 f 


mv

�b



�m� �v

�b



�m� ��v

�b

 � � � 
 �� ����

the TEM mode plus all the TMn modes� where � � n � m are propagating
or guided while the TMm�� and higher order modes are evanescent or
cuto�� For the parallel plate waveguide� there is one mode with zero cuto�
frequency and hence is guided for all frequencies� This is the TEM mode

which is equivalent to the transmission line mode�
The wavelength that corresponds to the cuto� frequency is known as the

cuto� wavelength� i�e��

�mc 

v

fmc



�b

m
� ����

When � � �mc� the corresponding TMm mode will be guided� You can think
of � as some kind of the �size� of the wave� and that only when the �size� of
the wave is less than �mc can a wave �enter� the waveguide� Notice that �mc

is proportional to the physical size of the waveguide�

IV� TE Case� E 
 �yEy�

�



The �eld for the TE case can be derived similarly to the TM case� The
electric �eld is polarized in the �y	direction� and satis�es�

��

�x�
�

��

�z�
� ����

�
Ey 
 �� ����

The �elds can be shown in a similar fashion to be

Ey 
 E� sin��xx�e
�j�zz� ����

Hx 
 � �z

��
E� sin��xx�e

�j�zz� ����

Hz 
 � �x

j��
E� cos��xx�e

�j�zz� ����

The boundary conditions are

Ey�x 
 �� 
 �� Ey�x 
 b� 
 �� ����

This gives

�x 

m	

b
� ���

as before� where ��x � ��z 
 ����� Hence� the TEm modes have the same
dispersion relation and cut	o� frequency as the TMm mode� However� when
m 
 �� �x 
 �� and ��������� imply that we have zero �eld� Therefore� TE�

mode does not exist� We say that TEm and TMm modes are degenerate
when they have the same cuto� frequencies�

We can decompose ���� into plane waves� i�e��

Ey 

E�

�j
�ej�xx�j�zz � e�j�xx�j�zz�� ����

and interpret the above as bouncing waves� Compared to ����� we see that
the two bouncing waves in ���� are of the opposite signs whereas that in ����
are of the same sign� This is because the electric �eld has to vanish on the
plates while the magnetic �eld need not�

TM� mode �eld

�����������

�����������
�����������

⊗
⊗

⊗⊗
⊗

⊗
⊗
⊗

⊗
⊗

⊗

⊗
⊗
⊗

⊗
⊗

⊗

⊗
⊗

x

z

E-field

H-field

⊗

�



TE� mode �eld

������������

�������������

⊗

⊗

⊗

⊗

⊗
⊗

⊗

⊗

z

E-field

H-field

⊗

⊗
⊗
⊗
⊗

The sketch of the �elds for TM� and TE� modes are as shown above�
For the TM mode� Hz 
 �� and Ez �
 �� while for the TE mode� Ez 
 ��
and Hz �
 �� Tangential electric �eld is zero on the plates while tangential
magnetic �eld is not zero on the plates� The above is the instantaneous �eld
plots� E�H is in the direction of propagation of the waves�

III� Phase and Group Velocities�

The phase velocity in the �z	direction of a wave in a waveguide is de�ned
to be

vp 

�

�z



�h
����� 	

m�
b


�i �

�





p
��

�
�

�
fmc
f

��� �

�

� ����

which is always larger than the speed of light for f 
 fmc� The group velocity
is

vg 

d�

d�z



�
d�z

d�

�
��




h
����� 	

m�
b


�i �

�

���



�
�

�
fmc
f

��� �

�

p
��

� ����

which is always less than the speed of light�

ω2c

ω

ω1c

ω0c

v  = ω/βzp

v  =g
 dω
dβz

TM  and TE  modes2 2

TM  = TEM mode0

TM  and TE  modes1 1

ω
β z

1

µε
= = C

βz

�



Since �z 
 �
c

h
� 	

�mc
�


�i �

�

� a plot of � versus �z is as shown� When

�z � �� the group velocity becomes zero while the phase velocity approaches
in�nity� When �z � �� or � � �� the group and phase velocities both
approach the velocity of light in free	space which is the TEM wave velocity�

�
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��� Hollow Waveguide�

z

A hollow cylindrical waveguide of uniform and arbitrary cross�section
can guide waves� The �elds inside a hollow waveguide can guide waves of
both TE and TM types� When the �eld is of TE type� the electric �eld is
purely transverse to the direction of wave propagation z� Hence Ez 	 �� For
TM �elds� the magnetic �eld is purely transverse to the z�axis and hence�
Hz 	 �� Therefore� the �eld components of TE �elds are

Ex� Ey� Hx� Hy� Hz�

and for TM �elds� they are

Hx� Hy� Ex� Ey� Ez�

We can hence characterize TE �elds as having Ez 	 �� Hz �	 �� and TM

�elds as Hz 	 �� Ez �	 �� Hence� the z�component of the H �eld can be used
to characterize TE �elds� while the z�component of the E �eld can be used
to characterize TM �elds in a hollow waveguide� Given Ez� and Hz� it will be
desirable to derive the transverse components of the �elds� We shall denote a
vector transverse to 
z by a subscript s� In this notation� Maxwell�s equations
become �

rs � 
z
�

�z

�
� Hs � 
zHz� 	 j��Es � 
zEz�� ��

�
rs � 
z

�

�z

�
� Es � 
zEz� 	 �j��Hs � 
zHz�� ��

where rs 	 
x �
�x

� 
y �
�y
� and Es and Hs are the electric �eld and the mag�

netic �eld� respectively� transverse to the z directon� Equating the transverse
components in �� and ��� we have

rs � 
zHz �
�

�z

z �Hs 	 j��Es� ��

rs � 
zEz �
�

�z

z � Es 	 �j��Hs� ��

�



Substituting �� for Hs into ��� we have

rs � 
zHz �
�

�z

z � j

��

�
rs � 
zEz �

�

�z

z � Es

�
	 j��Es� ��

Using the vector identity

A� B�C� 	 BA �C��CA �B�� ��

we can show that


z �rs � 
zEz 	 rs
z � 
zEz�� 
zEz
z � rs� 	 rsEz� ��

and

z � 
z �Es� 	 
z
z �Es�� Es
z � 
z� 	 �Es� ��

Hence� �� becomes

rs � 
zHz �
j

��

�

�z
rsEz � j

��

��

�z�
Es 	 j��Es� ��

If E is of the form Ae�j�zz �Bej�zz� then ��

�z�
	 ���

z and �� becomes

Es 	
�

����� ��
z

�
�

�z
rsEz � j��rs � 
zHz

�
� ���

In a similar fashion� we obtain

Hs 	
�

����� ��
z

�
�

�z
rsHz � j��rs � 
zEz

�
� ���

The above equations can be used to derive the transverse components of the
�elds given the 
z�components� Hence� in general� we only need to know the

z�components of the �elds�

I� Rectangular Waveguides

Rectangular waveguides are a special case of cylindrical waveguides with
uniform rectangular cross section� Hence� we can divide the waves inside the
waveguide into TM and TE types�

y

b

x
a0

z

�



TM Case� Hz 	 �� Ez �	 �

Inside the waveguide� we have a source free region� therefore

�r� � �����E 	 �� ���

or

�r� � �����Ez 	 �� ���

Equation ��� admits solutions of the form

Ez 	 E�

�
sin �xx

cos �xx

��
sin �yy

cos �yy

�
e�j�zz� ���

since
��

�x�

�
sin �xx

cos �xx

�
	 ��

x

�
sin �xx

cos �xx

�
� ���

��

�y�

�
sin �yy

cos �yy

�
	 ���

y

�
sin �yy

cos �yy

�
�

��

�z�
e�j�zz 	 ���

ze
j�zz� ���

Therefore

r� � �����Ez 	 ���

x � ��

y � ��

z � �����Ez 	 �� ���

This is only possible if

��

x � ��

y � ��

z 	 ����� ���

which is the dispersion relation� The boundary conditions require that

Ezx 	 �� 	 �� Ezy 	 �� 	 �� ���

Hence� the admissible solution is

Ez 	 E� sin�xx� sin�yy�e
�j�zz� ���

Also� we require that

Ezx 	 a� 	 �� Ezy 	 b� 	 �� ���

This is only possible if sin�xa� 	 � and sin�yb� 	 �� or

�xa 	 m��m 	 �� �� �� � � � � �yb 	 n�� n 	 �� �� �� �� � � � � ���

However� when m or n 	 �� Ez 	 �� Hence� we have

�x 	
m�

a
� m � �� �y 	

n�

b
� n � �� ���

�



which are the guidance conditions� To get the transverse E and H �elds�
we use ��� and ���

Ex 	
�

����� ��
z

�

�z

�

�x
Ez 	

�j�x�z
��
x � ��

y

E� cos�xx� sin�yy�e
�j�zz�

���

Ey 	
�

����� ��
z

�

�z

�

�y
Ez 	

�j�x�z
��
x � ��

y

E� sin�xx� cos�yy�e
�j�zz�

���

Hx 	
j��

����� ��
z

�

�y
Ez 	

j���y

��
x � ��

y

E� sin�xx� cos�yy�e
�j�zz� ���

Hy 	
�j��

����� ��
z

�

�x
Ez 	

�j���x
��
x � ��

y

E� cos�xx� sin�yy�e
�j�zz� ���

We note that the electric �elds satisfy their boundary conditions� From the
dispersion relation ���� we have

�z 	

r
�����

�m�

a

��
�
�n�
b

��
� ���

The solution that corresponds to a particular choice of m and n in ���
is known as the TMmn mode� For a given TMmn mode� �z will be pure
imaginary if

���� 	
�m�

a

�
�

�
�n�
b

�
�

� ���

or

� 	
�p
��

��m�

a

��
�
�n�
b

��� �

�

� ���

In this case� the mode is cuto�� and the �elds decay in the 
z�direction and
become purely evanescent� We de�ne the cuto� frequency for the TMmn

mode to be

�mnc 	
�p
��

��m�

a

��
�
�n�
b

��� �

�

	 v

��m�

a

��
�
�n�
b

��� �

�

� ���

The TMmn mode will not propagate if

� 	 �mnc or f 	 fmnc� ���

where fmnc 	
�mnc
��

� f 	 �
��
� The corresponding cuto� wavelength is


mnc 	 ��

��m�

a

��
�
�n�
b

���� �

�

� ��a�

Only when the wavelength 
 is smaller than this �size� can the wave �enter�
the waveguide and be guided as the TMmn mode�

�



To �nd the power �owing in the waveguide� we use the Poynting theorem�

Sz 	 ExH
�
y �EyH

�
x� ���

	
����

x�z

��
x � ��

y�
�
jE�j� cos��xx� sin��yy� �

����

y�z

��
x � ��

y�
�
jE�j� sin��xx� cos��yy�

	
���z

��
x � ��

y�
�
jE�j� ���

x cos
��xx� sin

��yy� � ��

y sin
��xx� cos

��yy��� ���

The total power

Pz 	

Z b

�

dy

Z a

�

dxSz 	
���zab jE�j�
���

x � ��
y�

�
��

x � ��

y� 	
���zab jE�j�
���

x � ��
y�

� ���

When f 	 fmnc� �z is purely imaginary and the power becomes purely reac�
tive� No real power or time average power �ows down a waveguide when all
the modes are cuto��

TE Case� Ez 	 �� Hz �	 ��

In this case�
Hz 	 H� cos�xx� cos�yy�e

�j�zz� ���

so that from equations ��� and ���� we have�

Ex 	 � j��

����� ��
z

�

�y
Hz 	

j���y

��
x � ��

y

H� cos�xx� sin�yy�e
�j�zz� ���

Ey 	
j��

����� ��
z

�

�x
Hz 	

�j���x
��
x � ��

y

H� sin�xx� cos�yy�e
�j�zz� ���

Hx 	
�

����� ��
z

�

�z

�

�x
Hz 	

j�x�z

��
x � ��

y

H� sin�xx� cos�yy�e
�j�zz�

���

Hy 	
�

����� ��
z

�

�z

�

�y
Hz 	

j�y�z

��
x � ��

y

H� cos�xx� sin�yy�e
�j�zz�

���

where ��

x � ��

y � ��

z 	 �� 	 ����� Matching boundary conditions for the
tangential electric �eld requires that

�x 	
m�

a
�m 	 �� �� �� �� � � � � �y 	

n�

b
� n 	 �� �� �� �� � � � � ���

Unlike the TM case� the TE case can have either m or n equal to zero�
Hence� TEm� or TE�n modes exist� However� when both m and n are zero�
Hz 	 H�e

�j�zz� Hx 	 Hy 	 �� and r �H �	 �� therefore� TE�� mode cannot
exist�

For the TEmn modes� the subscript m is associated with the longer side
of the rectangular waveguide� while n is associated with the shorter side� In

�



the case of TEm� mode� �y 	 �� implying that Ex 	 �� Ey �	 �� Hy 	 ��
Hx �	 �� Hz �	 �� The �elds resemble that of the TEm mode in a parallel
plate waveguide� For the general TEmn mode� the dispersion relation is

�z 	

r
�����

�m�

a

�
�

�
�n�
b

�
�

� ���

Hence� the TEmn mode and the TMmn mode have the same cuto� frequency
and they are degenerate�

Example� Designing a Waveguide to Propagate only the TE�� mode

The cuto� frequency of a TMmn or a TEmn mode is given by

�mnc 	
�p
��

��m�

a

��
�
�n�
b

��� �

�

� ���

Usually� a is assumed to be larger than b so that TE�� mode has the lowest
cuto� frequency� which is given by

f��c 	
v

�a
or 
��c 	 �a� ���

where v 	 �p
��
� and f��c 	

���c
��

� The next higher cuto� frequency is either

f��c or f��c depending on the ratio of a to b�

f��c 	
v

a
� f��c 	

v

�b
� ���

If a � �b� f��c 	 f��c� and if a 	 �b� f��c � f��c� f��c 	 f��c if a 	 �b� When
a 	 �b� and we want a waveguide to carry only the TE�� mode between ��
GHz and �� GHz� Therefore� we want f��c 	 �� GHz� and f��c 	 f��c 	
��GHz� If the waveguide is �lled with air� then v 	 �� ���m

s
� and we deduce

that
a 	

v

�f��c
	 ���cm� b 	

v

�f��c
	 ����� ���

In such a rectangular waveguide� only the TE�� will propagate above �� GHz
and below �� GHz� The other modes are all cuto�� Note that no mode could
propagate below �� GHz�

�
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��� Cavity Resonator�

y

b

z
0 a

x

–d

A cavity resonator is a useful microwave device� If we close o� two ends
of a rectangular waveguide with metallic walls� we have a rectangular cavity
resonator� In this case� the wave propagating in the �z�direction will bounce
o� the two walls resulting in a standing wave in the �z�direction� For the TM
case� we have

Ez 	 E� sin
�xx� sin
�yy�
e
�j�zz � �ej�zz�� 
�

Ex 	
�j�x�z
��
x � ��

y

E� cos
�xx� sin
�yy�
e
�j�zz � �ej�zz�� 
��

Ey 	
�j�y�z
��
x � ��

y

E� sin
�xx� cos
�yy�
e
�j�zz � �ej�zz�� 
��

For the boundary conditions to be satis�ed� we require that Ex
z 	 �� 	
Ey
z 	 �� 	 �� Hence� � 	 � and

Ez 	 �E� sin
�xx� sin
�yy� cos
�zz�� 
��

Ex 	
���x�z
��
x � ��

y

E� cos
�xx� sin
�yy� sin
�zz�� 
��

Ey 	
���y�z
��
x � ��

y

E� sin
�xx� cos
�yy� sin
�zz�� 
��

Furthermore� Ex
z 	 �d� 	 Ey
z 	 �d� 	 �� implying that

�z 	
p�

d
� p 	 �� � �� �� � � � � 
��

The guidance conditions for a waveguide demand that �x 	
m�

a
and �y 	

n�

b
�

where for TM case� neither m or n can be zero� Now that �z has to satisfy

��� the TM mode in a cavity is classi�ed as TMmnp mode� We note from 
��

�



that p can be zero while Ez �	 �� Hence� the TMmn� cavity mode can exist�
In order for 
��� 
��� and 
�� to be solutions to the wave equation� we require
that

���� 	 ��

x � ��

y � ��

z 	
�m�

a

�
�

�
�n�
b

�
�

�
�p�
d

�
�

� 
��

For a given choice of m� n� and p� only a single frequency can satisfy 
���
This frequency is the resonant frequency of the cavity� It is only at this
frequency that the cavity can sustain a free oscillation� At other frequencies�
the �elds interfere destructively and the free oscillation is not sustained� From

��� we gather that the resonant frequency for the TMmnp mode is

�mnp 	
p
��

��m�

a

�
�

�
�n�
b

�
�

�
�p�
d

�
�
� �

�

� 
��

For the TE case� similar derivation shows that

Hz 	 H� cos
�xx� cos
�yy� sin
�zz�� 
��

Ex 	
j���y

��
x � ��

y

H� cos
�xx� sin
�yy� sin
�zz�� 
�

Ey 	 � j���x

��
x � ��

y

H� sin
�xx� cos
�yy� sin
�zz�� 
��

Similarly� the boundary conditions require that

�x 	
m�

a
� �y 	

n�

b
� �z 	

p�

d
� 
��

When p 	 �� Hz 	 �� hence TEmn� mode does not exist� However� TE�np or
TEm�p modes can exist� The resonant frequency formula is as given in 
���
If a 	 b 	 d� the lowest resonant frequency is the TM��� mode� In this case�

���� 	
p
��

���
a

�
�

�
��
b

�
�
� �

�

� 
��

and Ez �	 �� Hx �	 �� Hy �	 �� Ex 	 Ey 	 �� A sketch of the �eld is as shown�

y

b

z a
x

— H-field
E-fieldTM

mode
110

We can decompose the wave into plane waves bouncing o� the four walls
of the cavity�

�



y
b

0 a
x

As an example� for a 	 � cm� b 	  cm� d 	 ��� cm� the resonant
frequency of the TM��� mode is

��f��� 	 �� ��

s
���

�
�����
	

�� ���

�� ���

p
�Hz� 
��

or

f��� 	
�

�
� ��� �

p
�Hz 	 ���� ���Hz 	 ���GHz� 
��

Cavity resonators are useful as �lters and tuners in microwave circuits� as LC
resonators are in RF circuits� Cavity resonators can also be used to measure
the frequency of an electromagnetic signal�

�
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��� Dielectric Waveguides �Slab��

When a wave is incident from a medium with higher dielectric constant
at an interface of two dielectric media� total internal re�ection occurs
when the angle of incident is larger than the critical angle� This fact can
be used to make waves bouncing between two interfaces of a dielectric slab
to be guided

–d/2

d/2

µ2, ε2

µ0, ε0

y
θ

θ

θ′′

z

θ′′′

region 0

region 1

region 2

x

µ1, ε1

Since total internal re�ection occurs for both TE and TM waves� guidance
is possible for both types of waves

I� TE Case E � �yEy

Ey is a solution to the wave equation in each region� In region �� we
assume a solution of the form

E�y � E�e
�j��xx�j�zz� 	
�

where
��

�x � ��

z � ������ � ��

�
� 	
a�

In region 
� we assume a solution of the form

E�y � A�e
�j��xx �B�e

j��xx�e�j�zz� 	��

where
��

�x � ��

z � ������ � ��

�
� 	�a�

In region �� the solution is of the form

E�y � E�e
j��xx�j�zz� 	��

where
��

�x � ��

z � ������ � ��

�
� 	�a�

�



We assume that all the solutions in the three regions to have the same z�
variation of e�j�zz by the phase matching condition�

In region 
� we have an up�going wave as well as a down�going wave� The
two waves have to be related by the re�ection coe�cient �� for the electric
�eld at the boundaries� �� is derived earlier in the course� Therefore at
x � d

�
� we have

B�e
j��x

d

� � ����A�e
�j��x

d

� � 	��

where ���� is the re�ection coe�cient at the regions 
 and � interface� At
x � �d

�
� we have

A�e
j��x

d

� � ����B�e
�j��x

d

� � 	��

where ���� is the re�ection coe�cient at the regions 
 and � interface� Mul�
tiplying equations 	�� and 	�� together� we have�

A�B�e
j��xd � ��������A�B�e

�j��xd� 	��

A� and B� are non�zero only if


 � ��������e
��j��xd� 	��

The above is known as the guidance condition of a dielectric slab waveg�
uide� If medium � is equal to medium 
� then ���� � ����� and the guidance
condition becomes


 � ��
���e

��j��xd� 	��

From before� for a wave incident at an angle ��

���� �
	� cos � � 	� cos �

��

	� cos � � 	� cos ���
� 	��

Since ��x � �� cos �� ��x � �� cos �
��� 	�� could be written as

���� �

��
��
��x � ��

��
��x

��
��
��x �

��
��
��x

�
����x � ����x

����x � ����x
� 	
��

Taking the square root of 	��� we have

����e
�j��xd � �
� 	

�

When we choose the plus sign� B� � A� from 	��� and from 	��

E�y � �A� cos	��xx�e
�j�zz � even in x� 	
��

When we choose the minus sign in 	

� we have B� � �A�� and

E�y � ��jA� sin	��xx�e
�j�zz � odd in x� 	
��

�



Multiplying 	

� by ej��x
d

� and manipulating� we have

��

��

��x
d

�
tan

�
��x

d

�

�
� j��x

d

�
even solutions� 	
��

��

��

��x
d

�
cot

�
��x

d

�

�
� j��x

d

�
odd solutions� 	
��

Subtracting 	
a� from 	�a� and solving for ��x� we have

��x � ��	���� � ����� � ��

�x�
�

� � 	
��

In order for 	
�� and 	
�� to be satis�ed� ��x has to be pure imaginary� In
other words� the waves in region � and � have to be evanescent and decay
exponentially away from the slab� Hence

��x � �j
�x � �j��	���� � ������ ��

�x�
�

� � 	
��

and 	
�� and 	
�� become

��

��

��x
d

�
tan��x

d

�
� 
�x

d

�
�

s
��	���� � �����

d�

�
�
�
��x

d

�

��

even solutions�

	
��

���

��

��x
d

�
cot ��x

d

�
� 
�x

d

�
�

s
��	���� � �����

d�

�
�
�
��x

d

�

�
�

odd solutions�

	
��
We can solve the above graphically by plotting

y� �
��

��

��x
d

�
tan

�
��x

d

�

�
even solutions� 	���

y� � ���

��

��x
d

�
cot

�
��x

d

�

�
odd solutions� 	�
�

y� �

�
��	���� � �����

d�

�
�
�
��x

d

�

�
�
� �

�

� 
�x

d

�
� 	���

TE1
TE0

β1x
d
23π

2

y3

y2y1y2y1

µ0
µ1

–

ω(µ1 ε1 – µ0 ε0) d/2

even

od
d

ev
en od
d

π/2
π

�



y� is the equation of a circle� the radius of the circle is given by

�	���� � �����
�

�

d

�
� 	���

The solutions to 	
�� and 	
�� are given by the intersections of y� with y� and
y�� We note from 	��� that the radius of the circle can be increased in three
ways� 	i� by increasing the frequency� 	ii� by increasing the contrast ����

����
� and

	iii� by increasing the thickness d of the slab�

When ��x � �j
�x� the re�ection coe�cient is

���� �
����x � j��
�x

����x � j��
�x

� exp

�
��j tan��

�
��
�x

����x

��
� 	���

and j����j � 
� Hence there is total internal re�ections and the wave is
guided by total internal re�ections� Cut�o� occurs when the total internal
re�ection ceases to occur� i�e� when the frequency decreases such that 
�x � ��
From the diagram� we see that 
�x � � when

�	���� � �����
�

�

d

�
�

m�

�
� m � �� 
� �� �� � � � � 	���

or
�mc �

m�

d	���� � �����
�

�

� m � �� 
� �� �� � � � � 	���

The mode that corresponds to the m�th cut�o� frequency above is labeled
the TEm mode� TE� mode is the mode that has no cut�o� or propagates at
all frequencies�

At cut�o�� 
�x � �� and from 	
a��

�z � �
p
����� 	���

for all the modes� Hence� both the group and the phase velocities are that of
the outer region� This is because when 
�x � �� the wave is not evanescent
outside� and most of the energy of the mode is carried by the exterior �eld�

When � ��� ��x � n�
d
from the diagram for all the modes� From 	�a��

�z �
q
������ � ��

�x � �
p
����� � ��� 	���

Hence the group and phase velocities approach that of the dielectric slab�
This is because when � ��� 
�x ��� and all the �elds are trapped in the
slab and propagating within it�

Because of this� the dispersion diagram of the di�erent modes appear as
below�

�
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ω
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II� TM Case H � �yHy

For the TM case� a similar guidance condition analogous to 	��� can be
derived


 � ���k���ke
��j��xd� 	���

where � is the re�ection coe�cient for the TM �eld� Similar derivations show
that the above guidance condition� for �� � ��� �� � ��� reduces to

��

��
��x

d

�
tan ��x

d

�
�

s
��	���� � �����

d�

�
�
�
��x

d

�

��

even solution�
	���

���
��
��x

d

�
cot��x

d

�
�

s
��	���� � �����

d�

�
�
�
��x

d

�

��

odd solution�
	�
�

Note that for equations 	�� and 	���� when we have two parallel metallic
plates� �k � 
� and �� � �
� and the guidance condition becomes


 � e��j��xd � ��x �
m�

d
�m � �� 
� �� � � � � 	���

which is what we have observed before�

�
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��� Vector Potential � Introduction to Antennas � Radiations

Maxwell�s equations are

r� E � �j��H� ��	

r�H � j��E
 J� ��	

r � �H � �� ��	

r � �E � �� ��	

Since r � �r�A	 � � we can let

�H � r�A� ��	

so that equation ��	 is automatically satis�ed� Substituting ��	 into ��	 we
have

r� �E
 j�A	 � �� ��	

Since r�r� � � we have

E � �j�A�r�� ��	

Hence knowing A and � uniquely determines E and H� We shall relate A
and � to the sources J and � of Maxwell�s equations� Substituting ��	 and
��	 into ��	 we have

r�r�A � j�����j�A�r�� 
 �J� ��	

or
r�A
 ����A � ��J
 j���r�
rr �A� ��	

Using ��	 in ��	 we have

r � �j�A
r�	 � �
�

�
� ���	

The above could be simpli�ed for the following observation� Equations ��	
and ��	 give the same E and H �elds under the transformation

A� � A
r�� ���	

�� � �� j��� ���	

The above are known as the Gauge Transformation� With the new A�

and �� we can substitute into ��	 and ��	 and they give the same E and H

�elds i�e�

r�A� � r�A
r�r� � r�A � �H� ���	

�j�A� �r�� � �j�A� j�r� �r�
 j�r� � E� ���	

�



It implies that A and � are not unique� The vector �eld A is not unique
unless we specify both its curl and its divergence� Hence in order to make
A unique we have to specify its divergence� If we specify the divergence of
A such that

r �A � �j����� ���	

then ��	 and ���	 become

r�A
 ���� � ��J� ���	

r��
 ����� � �
�

�
� ���	

The condition in ���	 is also known as the Lorentz gauge� Equations ���	
and ���	 represent a set of four inhomogeneous wave equations driven by the
sources of Maxwell�s equations� Hence given the sources � and J we may
�nd A and �� E and H may in turn be found using ��	 and ��	� However
as a consequence of the Lorentz gauge we need only to �nd A� � follows
directly from equation ���	�

Let us consider the relation due to an elemental current that can be
described by

J � �zIl	�r	 A
m�� ���	

where Il denotes the strength of this current and 	�r	 � 	�x		�y		�z	� Equa�
tion ���	 becomes

r�Az 
 ����Az � ��Il	�r	� ���	

Taking advantage of the spherical symmetry of the problem r� has only r
dependence in spherical coordinates we have

�

r�
d

dr
r�

d

dr
Az 
 ��Az � ��Il	�r	� ���	

where �� � ����� Equations ���	 and ���	 are similar in form to Poisson�s
equation with a point charge Q at the origin

r�� � �
Q

�
	�r	� ���	

We know that ���	 has the solution of the form

� �
Q

���r
� ���	

Hence we guess that the solution to ���	 is of the form

Az �
�Il

��r
C�r	� ���	

It can be shown that

�

r�
d

dr
r�

d

dr
f�r	 �

�

r

d�

dr�
rf�r	� ���	

�



Outside the origin the RHS of ���	 is zero and after using ���	 and ���	 in
���	 we have

d�

dr�
C�r	 
 ��C�r	 � �� ���	

This gives
C�r	 � e�j�r� ���	

Since we are looking for a solution that radiates energy to in�nity we choose
an outgoing solution in ���	� Hence

Az�r	 �
�Il

��r
e�j�r� ���	

for a source directed at a �z�direction� From ���	 we note that A and J

always point in the same direction� Therefore for a point source directed at
l and located at r� instead of the origin the vector potential A is

A�r	 �
�Il

�� jr� r�j
e�j�jr�r

�j� ���	

z

x

0 y

|r – r′|– –

r′– –r

–

By linear superposition the vector potential due to an arbitrary source
J is

A �
�

��

ZZZ
dr�

J�r�	

jr� r�j
e�j�jr�r

�j� ���	

Similarly we can show that

� �
�

���

ZZZ
dr�

��r�	

jr� r�j
e�j�jr�r

�j� ���	

�
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��� The Fields of a Hertzian Dipole

A Hertzian dipole is a dipole which is much smaller than the wavelength
under construction so that we can approximate it by a point current distri�
bution�

J�r� 	 
zIl��r�� ���

The dipole may look like the following

q
I

+

–

–q

generator

metallic spheres – charge reservoir

l is the e�ective length of the dipole so that the dipole moment p 	
ql� The charge q is varying time harmonically because it is driven by the
generator� Since dq

dt
	 I� we have

Il 	
dq

dt
l 	 j�ql 	 j�p� ��

for a Hertzian dipole� We already know that the corresponding vector poten�
tial is given by

A�r� 	 
z
�Il

��r
e�j�r� ���

The magnetic �eld is obtained� using cylindrical coordinates� as

H 	
�

�
r�A 	

�

�

�

�
�

�

�

�	
Az � 
	

�

��
Az

�
� ���

where �
��

	 �� r 	
p
�� � z�� In the above� �

��
	 �r

��
�
�r

	 �p
���z�

�
�r

	 �

r
�
�r
�

Hence�

H 	 �
	
�

r

Il

��

�
� �

r�
� j


�

r

�
e�j�r� ���

�



z

r

y

θ

φ
ρ

x
φ̂

In spherical coordinates� �

r
	 sin �� and ��� becomes

H 	 
	
Il

��r�
�� � j
r�e�j�r sin �� ���

The electric �eld can be derived using Maxwell�s equations�

E 	
�

j��
r�H 	

�

j��

�

r

�

r sin �

�

��
sin �H� � 
	

�

r

�

�r
rH�

�

	
Ile�j�r

j����r�

h

r cos ��� � j
r� � 
� sin ��� � j
r � 
�r��

i
� ���

Case I� Near Field� 
r � �

E �	 �

���r�
�
r cos � � 
� sin ��� 
r � �� ���

H� E� when 
r � �� ���


r could be made very small by making r
�
small or by making � � �� The

above is like the static �eld of a dipole�

Case II� Far Field �Radiation Field�� 
r � �

In this case�

E �	 
�j��
Il

��r
e�j�r sin �� ����

and

H �	 
	j

Il

��r
e�j�r sin �� ����

Note that E�

H�
	 ��

�
	

p
�

�
	 �� E and H are orthogonal to each other

and are both orthogonal to the direction of propagation� i�e� as in the case
of a plane wave� A spherical wave resembles a plane wave in the far �eld
approximation�

�



The time average power �ow is given by

hSi 	 �


�e�E�H�� 	 
r

�


� jH�j� 	 
r

�



�

Il

��r

��

sin� �� ���

The radiation �eld pattern of a Hertzian dipole is the plot of jEj as a
function of � at a constant r�

z

x, y|E|
θ

The radiation power pattern is the plot of hSri at a constant r�

z

x, y

The total power radiated by a Hertzian dipole is given by

P 	

Z
�	

�

d	

Z 	

�

d�r� sin �hSri 	 �

Z 	

�

d�
�



�

Il

��

��

sin� �� ����

SinceZ 	

�

d� sin� � 	 �
Z

��

�

�d cos ����� cos� �� 	

Z
�

��

dx��� x�� 	
�

�
� ����

then

P 	
�

�
��

�

Il

��

��

� ����

The directive gain of an antenna� D��� 	�� is de�ned as

D��� 	� 	
hSri
P

�	r�

� ����

�



where P
�	r�

is the power density if the power P were uniformly distributed
over a sphere� Substituting ��� and ���� into the above� we have

D��� 	� 	

�
�

�
�Il

�	r

��
sin� �

�

�	r�
�

�
��

�
�Il

�	

�� 	
�


sin� �� ����

The peak ofD��� 	� is known as the directivity of an antenna� It is ��� in this
case� If an antenna is radiating isotropically� its directivity is �� Therefore�
the lowest possible values for the directivity of an antenna is �� whereas it
can be over ��� for some antennas like re�ector antennas� A directive gain
pattern is a plot of the above function D��� 	� and it resembles the radiation
power pattern�

If the total power fed into the antenna instead of the total radiated power
is used in the denominator of ����� the ratio is known as the power gain or
just bf gain� The total power fed into the antenna is not equal to the total
radiated power because there could be some loss in the antenna system like
metallic loss�

De�ning a radiation resistance Rr by P 	 �

�
I�Rr� we have

Rr 	
P

I�
	 �

�

l

��

��

� where � 	 ����� ����

For example� for a Hertzian dipole with l 	 ����� Rr � ��� For a small dipole
with no charge reservoir at the two ends� the currents have to vanish at the
tip of the dipole�

a/2

I(z)

z
–a/2

The e�ective length of the dipole is half of its actual length due to the
manner the currents are distributed� For example� for a half�wave dipole�
a 	 �

�
� and if we use le� 	

�
�
in ����� we have

Rr � ���� ����

However� a half�wave dipole is not much smaller than a wavelength and does
not qualify to be a Hertzian dipole� Furthermore� the current distribution
on the half�wave dipole is not triangular in shape as above� A more precise
calculation shows that Rr 	 ��� for a half�wave dipole�

�
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The vector potential due to a source J�r�� can be calculated from the
equation

A�r� �

ZZZ
V

dr�
�J�r��

	� jr� r�j
e�j�jr�r

�j� �
�

where V is the volume occupied by J�r��

z

0 y

x

J(r′)

|r – r′|

r

r′• r

r′

When jrj � jr�j� then jr� r�j � r � r� � �r� Equation �
� becomes

A�r� ��

ZZZ
V

dr�
�J�r��

r � r� � �r
e�j�rej�r

���r

�
�e�j�r

	�r

ZZZ
V

dr�J�r��ej�r
���r

� e�j�r f��� ��

r
� ��A� � ��A� � �rAr� ��

In the above we have assumed that jr� � �rj � r but �r� � �r is not small� since �

can be large� When �r is large� f�����
r

is a slowly varying function compared

to e�j�r� Hence� we can regard f�����
r

almost to be a constant compared to
e�j�r� The magnetic �eld can be derived to be

H �



�
r�A � �




�

�
��
�

�r
A� � ��

�

�r
A�

�
� ���

However� �
�r
� �j� when �r is large� Hence�

H �
j�

�
���A� � ��A��� when �r �	� �	�

�



Similarly�

E �



j	

r�H �� �j	���A� � ��A��� ���

Linear Array of Dipole Antennas

If J�r�� is of the form

J�r�� � �zIl�A���x
�� �A���x

� � d�� � A���x
� � d��

� � � �� AN����x
� � dN������y

����z��� ���

y

r – r′
r

r′• r

r′

0

x
φ

d0 d1 d2 d3 d4 dN–3 dN–2 dN–1

the vector potential on the xy�plane can be derived to be

A�r� � �z
�Il

	�r
ej�r

ZZZ
dr��A���x

�� � A���x
� � d�� � � � � ���y

����z��e�j�r
���r

� �z
�Il

	�r
e�j�r

�
A� � A�e

�j�d� cos � �A�e
j�d� cos� � � � ��AN��e

j�dN�� cos�
�
�

���

If dn � nd� and An � ejn�� then ��� becomes

A�r� � �z
�Il

	�r
e�j�r

�

 � ej��d cos���� � e�j��d cos���� � � � �� ej�N�����d cos����

�
�

���
which is of the form

N��X
n��

xn �

� xN


� x
� ���

Therefore�

A�r� � �z
�Il

	�r
e�j�r
� ejN��d cos����


� ej��d cos����
� �
��

The electric �eld on the xy�plane is E� � �j	A� � �j	Az� Hence� jE�j is of
the form

jE�j � jE�j

����
� ejN��d cos����


� ej��d cos����

����
� jE�j

�����
sin N

�
��d cos�� ��

sin �
�
��d cos�� ��

����� � �

�

�



Equation �

� is of the form jsinNxj
jsin xj

� Plots of jsin �xj and jsin xj are shown as

an example�

–2π –π 0 π 2π
x

|sin x|
|sin 3x|

sin 3x
sin x

–π 0 π 2π
x

–2π

In equation �

��  � �
�
��d cos�� ��� We notice that the maximum in

�

� would occur if  � n�� or if

�d cos�� � � n�� n � ��

�
�
�� � � � � �
�

The zeros or nulls will occur at Nx � n�� or

�d cos�� � �
n�

N
� n � 

�
�
�� � � � � n �� mN� �
��

For example�

Case I� � � �� �d � �� principal maximum is at � � 
�
�
if N � �� nulls

are at � � 
 cos��
�
�n
	

�
� or � � 
���	��
������


�����

	��
��

y

x

66.4˚

36.9˚

–36.9˚

–66.4˚

113.6˚

143.1˚

–113.6˚

–143.1˚

broadside 
array

Case II� � � �� �d � �� principal maximum is at � � �� �� if N � 	�
nulls are at � � 
 cos��

�
n
�
� 


�
� or � � 

���
����
����

�



y

x

120˚ 90˚ 60˚

–120˚ –90˚ –60˚

The interference e�ects between the di�erent antenna elements of a linear
array focus the power in a given direction� We can use linear array to increase
the directivity of antennas�

Note that equation ��� can also be derived by other means� We know
that the vector potential due to one dipole is

A � �z
�Il

	�

e�j�jr�r
�j

jr� r�j
� �
	�

when the dipole is located at r� and pointing in the �z�direction� Hence
for an array of dipoles of di�erent phases and amplitudes� located at x �
�xd�� �xd�� �xd�� � � � � �xdN��� the vector potential by linear superposition is

A�r� � �z
�Il

	�

�
e�j�jr��xd�j

jr� �xd�j
A� �

e�j�jr��xd�j

jr� �xd�j
A� � � � ��

e�j�jr��xdN��j

jr� �xdN��j
AN��

�
�

�
��
If we approximate jr� �xdnj by r � �r � �xdN � r � dN cos�� in the phase� and
by r in the denominator� then �
�� becomes

A�r� � �z
�Il

	�r
e�j�r

�
A� � A�e

�j�d� cos � �A�e
j�d� cos�

� � � �� AN��e
j�dN�� cos�

�
� �
��

which is the same as equation ���� The interference between the terms in
�
�� can be used to generate di�erent radiation patterns for di�erent com�
munication applications�

�



Let c � a	 jb� and h � f 	 jg� then

c	 h � 
a	 f� 	 j
b	 g�� 
��

and
c� h � 
a� f� 	 j
b� g�� 
��

Multiplication and Division

ch � 
a	 jb�
f 	 jg� � 
af � bg� 	 j
bf 	 ag�� 
��

c

h
�

a	 jb

f 	 jg
�


a	 jb�
f � jg�


f 	 jg�
f � jg�
�

af 	 bg

f � 	 g�
	 j

bf � ag

f � 	 g�
� 
��

Multiplication and division are more conveniently carried out in a polar form�
Let

c � jcj ej�� � h � jhj ej�� � 
��

then
ch � jcj jhj ej�������� 
��

c

h
�
jcj
jhje

j�������� 
���

Square Root of a Complex Number

It is most convenient to take the square root of a complex number in
polar form or by converting it to polar form�

c � jcj ej�� �
p
a� 	 b�ej tan

�� b
a � 
���

p
c � jcj �� ej ��� � 
a� 	 b��

�

� ej
�

�
tan�� b

a � 
��

In fact
c

�

m � jcj �m ej
��
m � 
a� 	 b��

�

�m ej
�

m
tan�� b

a � 
���

Phasor Representation of a Time�Harmonic Scalar

�



If V 
t� is a time�harmonic signal such that

V 
t� � V� cos
�t	 ��� 
���

it could also be written as

V 
t� � �efV�e
j�ej�tg� 
���

The term �V � V�e
j� is known as the phasor representation of V 
t��

If U
t� � U� cos
�t	 ���� or the phasor representation of U
t� is

�U � U�e
j��� 
���

It can be shown easily that

V 
t� 	 U
t� � �ef�V�e
j�� �z �

�V

	U�e
j��� �z �

�U

�ej�tg� 
���

Hence �V 	 �U is a phasor representation of V 
t� 	 U
t��
Also

�V 
t�

�t
�

�

�t
�efV�e

j�ej�tg � �efj� V�e
j�� �z �

�V

ej�tg� 
���

Therefore j� �V is a phasor representation of �
�t
V 
t�� However� as a word of

caution� �V �U is not a phasor representation of V 
t�U
t�� You can convince
yourself of this�

Exercise

�� Show that�

a� c	 c� is always real�

b� c� c� is always imaginary�

c� c�c� has magnitude equal to ��

� Consider z� � � 	 j� It is a second order polynomial with two roots�
Find the two roots�

�� Obtain the phasor representation of the following

a� V 
t� � �� cos
�t	 �

�
��


b� I
t� � �� sin
�t	 �
�
��


c� A
t� � � sin�t�  cos�t�

d� C
t� � � cos
�t	 �

	
� 	 � sin
�t	 �

�
��

�� Obtain C
t� in terms of � from the following phasors�

a� c � � 	 j�

�




b� c � � exp
j�����

c� c � �ej

�
� 	 �ej��
�


d� c � j sin �z�

�� 
a� Using binomial theorem� show that

p
� 	 ja � �

�
� 	 j

a



�
� if jaj � ��


b� Show that

p
� 	 ja � �
� 	 j�

�a


� �

�

� if jaj � ��

�


